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Abstract 

AFIT has had a long-standing interest in solving the protein structure prediction 

(PSP) problem. The PSP problem is an intractable problem that if "solved" can lead to 

revolutionary new techniques for everything from the development of new medicines to 

optical computer switches. The challenge is to find a reliable and consistent method of 

predicting the 3-dimensional structure of a protein given its defining sequence of amino 

acids. PSP is primarily concerned with predicting the tertiary protein structure without 

regards to how the protein came to this folded state. The tertiary structure determines 

the protein's functionality. 

Genetic algorithms (GAs) are stochastic search routines that are capable of 

providing solutions to intractable problems. The use of GAs plays an important part in 

the search for near optimal solutions in large search spaces. The PSP solution 

landscape is so large and complex that deterministic methods flounder due to the 

combinatoric issues involved with enumerating these massive search spaces. This 

makes the GA an ideal candidate for finding solutions to the PSP problem. 

This is an engineering investigation into the effectiveness and efficiency of the 

Linkage Learning GA (LLGA) applied to the PSP problem. The LLGA implementations 

takes explicit advantage of "tight linkages" early enough in its algorithmic processing to 

overcome the disruptive effects of crossover. The LLGA is integrated with the 

previously developed and tested AFIT CHARMm energy model software. 

Furthermore, a parallel version, pLLGA, is developed using a data partitioning 

scheme to "farm out" the CHARMm evaluations. Portability across AFIT's 

heterogeneous ABC Beowulf system, distributed networks, and massively parallel 

platforms is accomplished through the use of object-oriented C++ and the Message 

Passing Interface (MPI). This model improves the efficiency of the LLGA algorithm. 

Ramachandran developed constraints are incorporated into the LLGA to exploit 

domain knowledge in order to improve the effectiveness of the search technique. This 

approach, constrained-LLGA (cLLGA), has been parallelized using the same 

decomposition as the pLLGA. This new implementation is called the constrained- 

parallel LLGA (cpLLGA). Efficiency analysis for these two implementations is 

discussed. 

IX 



Finally, the results from these experiments are compared to previous AFIT 

implementations. The parallel fast messy GA and the parallel real-valued GA are 

compared to the pLLGA and cpLLGA, respectively. 



1.0 Introduction 

Computer solutions to many complex optimization problems cannot be obtained 

in acceptable amounts of time. Even the most powerful of today's super computers, if 

given a problem of sufficient complexity, would take centuries to return a solution1. Yet, 

if truly complex problems - such as the so-called "Grand Challenges" - are to be solved, 

improved algorithmic methods must be accompanied by similar improvements in 

computer technology. 

Recent research efforts have turned towards creating general search algorithms 

designed to "overpower" these difficult problems by finding "acceptable" solutions. The 

Air Force Institute of Technology (AFIT) has long been a leader in the pursuit of solving 

these Grand Challenges. Two main research efforts spearheaded by AFIT as part of 

these efforts are parallel computing and semi-optimal search algorithms. Parallel 

computing is a field of computer science/engineering that transforms problems 

traditionally solved sequentially by decomposing them into independent subproblems 

that can be solved simultaneously on separate processors. The other effort, semi- 

optimal stochastic search algorithms are a means to find reasonably "good" or 

suboptimal solutions to intractable problems. 

One such problem AFIT has had a long interest in solving is the protein structure 

prediction (PSP) problem. The PSP problem is an intractable problem contained in the 

class of Grand Challenges [47]. The challenge is to find a reliable and consistent 

method of predicting the 3-dimensional structure of a protein given its defining sequence 

of amino acids. An exhaustive search of a reasonable discretization of the entire 

solution space for even the smallest proteins consumes more time then the estimated 

age of the universe [15]! This thesis research explores genetic algorithms as a possible 

means to solve the PSP problem. 

1.1 Protein Structure Prediction (PSP) / Protein Folding Prediction (PFP) 

The PSP and Protein Folding Prediction (PFP) problem are two related problems 

that have the same overall objective: to accurately predict the conformational structure 

of a protein. The PSP approach is primarily concerned with predicting the protein's 

tertiary structure without regards to how the protein arrived at this folded state. On the 

1 See Appendix A. 



other hand, the PFP's primary concern is the transition process the protein undergoes 

starting from the primary structure and ending in the tertiary structure (ab initio). 

A protein is comprised of amino acids linked together through chemical bonding. 

The tertiary structure of a protein corresponds to positioning all its amino groups in such 

a manner that the overall molecule has the lowest energy (i.e., conformational energy). 

Although the structure of a specific protein, hence the positions of all the atoms, can be 

accurately determined using currently available methods (x-ray crystallography and 

nuclear magnetic resonance - see APPENDIX B for a detailed description -), each of 

these methods requires several years to obtain results for a single protein [18], and the 

protein must first be synthesized or isolated. Therefore, a portion of the PSP/PFP 

community has turned its attention to predicting the conformational structure through the 

use of computer models and simulations. 

1.1.1  PSP Problem Class 

The PSP problem belongs to the class of problems for which currently there is 

no known non-polynomial-time complexity nondeterministic algorithm (i.e., NP-complete) 

[48]. Proving the problem is in NP and it can be mapped to some other "known" NP- 

complete problem shows its NP-completeness. The PSP problem is in NP because the 

size of the search space is defined by the number of independently variable dihedral 

angles raised to the power of the number of allowed rotation angles. In other words, 

(cardinality IProteinl)n where n = number of positions a dihedral can hold and the 

cardinality represents the number of independently variable dihedral angles within the 

protein. For example, if we used a three-peptide protein with pi rooted at the axis of a 

normal Cartesian plane (0,0), p2 can be positioned at 0° to 360° about the origin, and 

P3 can similarly rotate about p2- In this example, P = {pi, P2, P3) and n = 360 yielding 

2360 possibilities. This simplification allows for more variability within the rotation then 

what is allowed by nature, which is explained in more detail in the following section. 

Mapping the PSP problem to another known NP-complete class problem is a 

trivial but rather lengthy matter. The requirement is to prove that the PSP problem is 

polynomial transformable to another known NP-complete problem. The argument and 

proof is in [48]. Because the PSP problem is NP-complete, we will never truly be able to 

say, "Eureka, we found the global optimal answer!" through computational power alone. 



1.1.2 PSP Structure 

The structure of the PSP problem is exclusively defined by the means of 

calculating the conformational energy. For instance, usually empirical methods only 

take dihedral bond angles into account while holding such energy terms like bond length 

and bond angle constant. Furthermore, they usually don't account for interactions 

between the protein and the surrounding solvent. On the other end of the calculation 

spectrum, ab initio methods use all atomic interactions when calculating the 

conformational energy as the protein folds. Table 1 lists the practical differences 

between the three general computational methods. 

Empirical Methods 

• Used in molecules containing thousands of atoms. 
■    Can be applied to organics, oligonucleotides, peptides, and saccharides 

(metallo-organics & inorganics in some cases). 
• Vacuum, implicit, or explicit solvent environments 
• Can only be used to study ground state. 
• Can be used to explain thermodynamic and kinetic properties. 

Semi-Empirical Methods 

• Limited to hundreds of atoms 
• Can be applied to organics, organo-metallics, and small oligomers 

(peptide, nucleotide, saccharides). 
• Can be used to study ground, transition, and exited states (certain 

Ab Initio Methods 

• Limited to tens of atoms and still best performed using a supercomputer. 
• Can be applied to organics, organo-metallics. and molecular fragments 

(e.g. catalytic components of enzyme). 
• Can be used to study ground, transition, and exited states (certain 

Table 1: Practical Differences of the Computational Engines 

Assuming the use of an empirical computational method, the PSP problem 

structure reduces to: 

Given a protein (P) comprised of a chain of peptides (p), each having a 
dihedral angle associated on one end, given the position of the first peptide 
find the positions of {pi, p2, ..., Pn) such that the conformational energy level 
(C) is the lowest" 
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Equation 1: Simplified Assumption 

Of course, this is a drastic over simplification of the PSP problem because there 

are many molecular chemistry concepts that we have not yet taken into account. The 

earlier assumption that a peptide only has a single dihedral angle is intuitively wrong. 

We know from basic geometry that to position an object in 3D space we must use three 

angles to define rotation about the x, y, and z-axis. Thus, in molecular chemistry, a 

polypeptide is viewed from the description of a single peptide unit. The polypeptide has 

a direction associated with it for geometric and scientific description purposes. The 

peptide begins at the a-amino and ends at the oc-carboxyl group. (Refer to Figure 1.) 

Each peptide has three associated angles: ¥ (psi), <|> {phi), and a> (omega). 

A single "Residue" 
or 

"Peptide Unit" 

Figure 1: A Three Amino Acid Protein 



A peptide can be considered rigid and planar about the co dihedral angle2, but 

this simplifying assumption still allows each peptide structure to rotate at either side of 

the a-carbon because these bonds are pure "single" bonds. Rotations about these 

bonds are defines as ¥ (psi) and ty (phi) dihedral angles. Looking at Figure 2, V refers 

to the angle of rotation of the plane on the left about the C-Ca single bond and $ refers 

to the angle of rotation of the plane on the right about the Ca-N single bond. [22]. 

J 

Figure 2: PFP Simplified 

This methodology simplifies the protein molecule's conformation energy calculation to 

just the dihedral angle specified for each peptide. It does not take into account the 

rotations of protein side-chains. 

So far, we have discussed how each of the peptides connects in order to form 

the overall protein. This is called the molecular backbone of the protein, and it is 

distinguished by regular repeating amino acid sequences, but the protein also contains 

side-chains. Side-chains are distinctive non-repeating chemical structures [22]. Figure 

1 and Figure 2 indicate the side-chains as a single R atom, but they can be comprised 

2 co is held to 180° 



of many atoms and vary in length. The dihedral angle(s) formed by the side-chains are 

designated by % (chi). Each protein can have many % dihedral angles. Equation 2 

indicates the basic data requirements per peptide to completely define the PSP 

problem's structure. 

<D = <0-360> 

X, =(0-360) 

Equation 2: Psi, Phi, and Chi Constraints 

Of course, there are still other requirements to meet, but these "requirements" 

only serve to constrain the possible positions these angles can hold (i.e., no two atoms 

can occupy the same space, two bonded atoms cannot be separated by more than a 

few angstroms, etc.). Refer to [14,15, 18, and 37] for a more complete discussion. It is 

sufficient for our discussion here to understand that the positions of each atom within 

the protein molecule can be defined by Equation 2. 

1.2 Genetic Algorithms 

Genetic algorithms (GAs) are semi-optimal stochastic search algorithms that are 

capable of providing "good" solutions to intractable problems. In practical applications, 

the execution time of a genetic algorithm is typically dominated by the fitness function 

calculation. This function is problem domain dependent and usually of polynomial time 

complexity. The use of GAs plays an important part in the search for near optimal 

solutions in large search spaces. Such search spaces (landscapes) are so large or 

complex that deterministic methods flounder due to the combinatoric issues. The 

algorithmic power of GAs come from their robustness, and their ability to generally find 

"acceptably good" solutions to these complex problems "acceptably quickly" [13]. GAs 

are loosely based on theoretical evolutionary processes [16]. Therefore, many of the 

terms associated with evolution and biology are interchangeable with terms created 

specifically for GAs3. 

GAs work on populations of solutions called chromosomes. Historically, the first 

well-known genetic algorithm was the simple GA (sGA) developed by Goldberg. sGAs 

perform three basic operations on the chromosome populations: selection, crossover, 

and mutation [15]. The algorithm steps through these three operations repeatedly until 

Reference Appendix A: Background on Genetic Algorithms by Charles Kaiser 



some stopping criterion is met. The execution of a single pass through these steps is 

called a generation. 

The sGA accomplished several important tasks for the genetic algorithm 

community - the most important was validating the effectiveness and efficiency of GAs 

in general. Over time, research suggested that a class of problems, called "deceptive 

problems," cannot be effectively evaluated by the sGA [1]. This class of problems is 

characterized by having coding function combinations that have misleading low-order 

building blocks causing the GA to converge to sub-optimal points. Therefore, some GA 

researchers ushered in the era of the linkage investigating genetic algorithms (LIGAs) 

[1, 2, 4, 5, 7, 8, 9]. The algorithmic concentration of this thesis research is on the LIGA 

family of GAs. 

1.3 Parallel & Distributed Computing 

GAs are easily parallelizable because one can execute multiple copies of the 

same GA program with different subpopulations on different processors and select the 

best solution after the last processor has terminated. Two general forms of parallelism 

exist which can lead to performance improvements when algorithms are implemented in 

parallel: data parallelism and control parallelism. These parallelization techniques are 

discussed in APPENDIX C. The properties that can be most profitably exploited depend 

upon the problem domain, the specific GA algorithm, and the parallel architecture 

chosen. 

A problem is well-parallelized if it can be computed very quickly by an algorithm 

which uses a feasible amount of processors [44]. A natural way to uncover whether or 

not a particular algorithm is parallelizable is to determine if it belongs in Nick's Class 

(NC) [44]. NC contains the class of computational problems that can be solved on the 

parallel random access machine (PRAM) model by a deterministic algorithm in 

polylogarithmic time using only a polynomial number of processors. (The PRAM 

theoretical model of computation is formally defined as a computer consisting of p 

processors and a global memory of unbounded size that is uniformly accessible to all 

processors [36].) In general, NC includes algorithms that satisfy: 



T (n) = n! log' n with 

«'' log1»     i    * />(„) = „i =$ Tn[n) = T— = log  n 

where, Ts = sequential execution time, 
TD = parallel execution time. 

Equation 3: Mathamatical Representation of NC Problem 

Genetic algorithms are one such class of algorithms that satisfy this NC structure. 

A wide variety of parallel architectures have been designed and implemented. 

High level design options include: single instruction, multiple data stream (SIMD) - a 

single control unit dispatches instructions to each processing unit; multiple instruction 

stream, single data stream (MISD) - each processor performs different operations on a 

single data stream (i.e., vector processors); multiple instruction stream, multiple data 

stream (MIMD) - each processor is capable of executing a different program 

independent of the other processors [36]. No single architecture, of course, has been 

shown to be clearly superior for all applications. 

1.4 Visualization 

The basic premise of scientific visualization is the use of computer-generated 

pictures to gain insight from the data [60]. This is still a very active and vital arena of 

research. In particular, the GA community does not have a solid foundation of 

visualization techniques. On the other hand, commercial packages for visualizing 

proteins, polypeptides, and other molecule are readily available (i.e., Quanta, RASMOL, 

Cerius, etc.). Alas, these commercial packages only allow the user to visualize 

postpartum. Currently, there is no software package available which allows the user to 

manipulate the molecule as it folds. This is due to the fact that to view the folding 

protein the update rate of the visualization would need to be on the order of a 

femtosecond (e.g., 10"15 seconds). On the other hand, our contribution to this vestal 

area of expression is the ability to visualize the search space traversed by the GA. 

As we discussed previously, the PSP search space is massively "huge" when 

visualized in 2 dimensions. But when viewed in its true n-dimensional form where n 

equals the number of independent variables entered into the energy function, the search 

space is drastically reduced being bound in all dimensions by 360°. Except now we 

have the problem of rendering a 25 dimensional picture for just even for a small protein 

such as [Met]-Enkephalin! Some research indicates that the resulting image is a 25 



dimensional funnel4. We have attempted to transform this insurmountable situation into 

a comprehensible rendering in just 3-dimensions. Our approach takes full advantage of 

mathematical norms and color to produce an indication of the PSP problem domain 

landscape and the path in which the GA traversed to find the minimum. 

1.5 Research Objectives & Rationale 

The goal of this research is to investigate the protein structure prediction 

problem using the spectrum of Evolutionary Algorithms such as genetic algorithms, 

evolution strategies, and evolutionary programming. The summation of the research 

directly contributes to the continuing efforts of the United States Air Force Research 

Laboratory's (AFRL) search for a robust and efficient technique to expedite their efforts 

in developing new materials. In particular, AFRL is interested in developing 

chromophore-substituted polymer chains with control optical properties, so-called smart 

filters or optical switches [37]. 

The specific intentions of the research are decomposed into the following 

objectives: 

OBJECTIVE 1: Investigate the protein structure prediction problem. 

RATIONALE: To understand the problem domain. 

1) Learn key PSP concepts and terminology. 
2) Understand scientific limitations that restrict "our" ability to directly measure a 

protein's folding process. 
3) Understand different methods for measuring a protein's conformational 

energy (i.e., x-ray crystallography, nuclear magnetic resonance, 
computational mechanics). 

OBJECTIVE 2: Investigate the spectrum of Evolutionary Algorithms such as 

genetic algorithms, evolution strategies, and evolutionary programming. 

RATIONALE: To understand the chosen algorithm domain. 

1) Develop at least one building block propagating GA based upon analysis (i.e., 
Selfish Gene GA, Linkage Learning GA, Compressed Linkage Learning GA, 
or Gene Expression Messy GA). 

2) Integrate building block propagating GA with the CHARMm energy function 
for the PSP problem. 

3) Compare building block propagating GA with fast messy GA (fmGA) currently 
in AFIT Toolbox, for effectiveness in finding conformational energy states, 
(sequential model: Are we getting a corrected answer? - effectiveness) 

4 See Chapter 2. 



4) Compare building block propagating GA with fmGA for efficiency in finding 
conformational energy states, (sequential model: Are we getting the answer 
in comparable time? - efficiency) 

5) Parallelize building block propagating GA using farming model for fitness 
evaluations and compare to parallel fmGA (pfmGA) based on effectiveness 
and efficiency in finding conformational energy states, (parallel model: Are 
we getting the correct answer in a comparable amount of time?) 

OBJECTIVE 3: Develop a bounding filter using accepted molecular biochemistry 

concepts in order to curtail the number of solutions possible in an attempt to limit the 

fitness landscape. 

RATIONALE: AFIT's previous work in this area curtailed our ability to use the 

product of the research in other Evolutionary Algorithms or different search 

methodologies. 

1) Create bounding function using Ramachandran Plots and coordinate 
transformations using portability as key design consideration [37]. 

OBJECTIVE 4: Apply Evolutionary Algorithms integrated with problem domain 

fitness functions to a variety of test cases (larger proteins -> more atoms) in serial and 

parallel implementations. 

RATIONALE: AFIT's previous research has been confined to a relatively 

noncomplex 5-residue protein. The higher complexity associated with "larger" proteins 

(i.e., 100-residues) must be determined and overcome. 

1) Port AFIT research efforts to larger proteins. 
2) Develop a set of procedures for GA integration with larger protein 

representation. 
3) Investigate automation. 
4) Create a USER'S GUIDE for developed building block propagating GA, the 

current implemented fmGA, and the current implemented pfmGA. 

OBJECTIVE 5: Create effective algorithm visualization methodology to facilitate 

future PSP an GA researchers. 

RATIONALE: The pattern in which an Evolutionary Algorithm searches a 

problem domain landscape is inherently difficult to visualize. The product of this 

research should allow future PSP researchers to "see" the problem domain landscape 

being uncovered. 

1) Build GA solution space visualization tools (2D phenotype vs. genotype) - 
automated 

2) Build GA search space visualization tools (3D mapping of search area) - 
automated 

10 



3) Create and document methodology of electronically porting final protein 
"answers" produced by GA into VMD or other visualization tools for structural 
comparison with "actual" conformation. 

1.6 Methodology 

The existing CHARMm energy model developed by Brinkman [18] and modified 

by Gates [15] is integrated with the Linkage Learning Genetic Algorithm (LLGA) 

developed by Harik [17]. It is engineered to incorporate parallel constructs (the parallel 

LLGA) and Ramachandran constraints (constrained pLLGA & constrained LLGA). 

The serial and parallel implementations are compared for correctness and 

performance gains. Then, these algorithms are compared against previous AFIT results 

for the fast messy GA [15] and hybrid GA [37]. The constrained implementations are 

compared against Kaiser's work involving real value constrained GAs [37]. Finally, the 

protein conformations uncovered in the GA searches are transformed by our 

visualization software to produce an image of the traversed search space. 

1.7 Assumptions on Research Context 

There are several assumptions limiting the research scope as presented in this 

thesis: 

♦ The GAs in AFIT's Genetic Algorithm Toolkit (AGCT) work correctly (see Figure 
24). 

♦ The CHARMm energy model implemented by previous master students works 
correctly and the correct z-matrix, RTF, and parameter files are available. 

♦ Any software developed is considered "engineering software" and may include 
design alternatives that do not completely follow sound software engineering 
principles. 

♦ The reader has a basic understanding of GAs, computer science, parallelization 
techniques, and scientific experimentation as an aid to understanding Chapters 
2, 3, 4, and 5. 

These assumptions are included to curtail the scope of this thesis presentation. 

1.8 Overview 
This chapter has introduced the general research problem (i.e., the PSP/PFP), 

described the main elements of the approach, and rationalized the need for expanding 

the research effort on GAs and the PSP problem. The rest of this thesis is decomposed 

into six areas. CHAPTER 2 discusses the problem domain associated with the PFP 

problem, justifies the selected energy model, covers the problem domain/algorithm 

domain integration, and presents a visualization tool. CHAPTER 3 explores different 

linkage investigating genetic algorithms (LIGAs), which we apply towards solving the 

11 



PSP problem. CHAPTER 4 presents the details for parallelization of the selected 

solution approach. CHAPTER 5 explains the experimental design, and CHAPTER 6 

analyzes the results of these experiments. Finally, CHAPTER 7 concludes this thesis 

and presents direction for future PSP/PFP voyagers. 

12 



2.0 Literature Review 

2.1 Introduction 

Many articles have been written covering the basics of the Protein Structure 

Prediction (PSP) problem, it is our intention here not to duplicate these efforts [3,14, 15, 

18, 19, 21, 37, 48, 50, 61, 63, 64]. The reader is directed to APPENDIX A for the basic 

PSP background information. The intent of this chapter is to cover areas of the PSP 

problem that directly impact our efforts. Mainly, the PSP landscape is discussed in 

Section 2.2; Section 2.3 justifies our energy model selection; Section 2.4 summarizes 

our approach to bounding the search space; and our unique visualization technique is 

reviewed in Section 2.5. 

2.2 PSP Landscape 

The most challenging aspect of the PSP problem is that the conformation energy 

calculation creates an enormous number of local minima. Therefore, any attempt using 

local minimization techniques usually becomes caught in arbitrary local minima. These 

minima can be arbitrarily far from the global minimum. The small differences between 

the assumed conformation energy and these minima makes it extremely difficult to know 

how close one is to the accepted energy minimum simply by comparing to the calculated 

energy. It is assumed that the protein's geometry defined by the naturally occurring 

conformation is the global minimum [50]. Note that the energy model used and the 

refinement of the input data required in the model define the size of the energy 

landscape (i.e., the search space)5. 

For example, lets assume an energy model that only requires as input the 

dihedral angles of a protein that consists of 24 dihedral angles. If each dihedral angle 

were allowed to rotate freely about each bond without considering any constraints, then 

Equation 4 would model the size of the conformation space. 

search space = cls 

where d is the number of values each dihedral angle can assume 

N is the number of independently variable dihedral angles 

Equation 4: Size of the Landscape 

See Section 2.3 for a discussion of the different energy models used in PSP calculations. 
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For argument's sake, we allow two atoms to occupy the same space and let the 

energy model indicate the invalidity of the resulting protein6. Therefore, supposing that 

each dihedral angle has 360 possible values, our example protein would have 

approximately 2.25e+61 different orientations7. If only one tenth of these orientations 

belonged to the set of possible minima, then there would be 1 out of 2.25e+60 chances 

of randomly finding the global minimum. 

The search space terrain of such a protein is extremely rugged consisting of 

millions of valleys and peaks. How a protein, with no known memory capability, finds 

the global minimum in this complex landscape is still a mystery. The process is driven 

by forces of physics yet to be understood! Experiments suggest that a protein's 

approach to the global minimum is characterized by two phases. The first phase is a 

rapid folding phase that results in a nearly folded protein. This is followed by a lag 

phase which completes the folding process [50, 51]. This suggests the existence of a 

large energy barrier with many saddles around the valley containing the global 

minimum. See Figure 3 [50]. 
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Figure 3: Metastable State 

6 An invalid protein would be represented by extremely high conformation energy. 
7 Some of trie produced proteins cannot exist outside of this model. 
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Other scientists argue that the conformation state might be a metastable state 

with high barriers, or it might just be the lowest local minimum that is kinetically 

accessible from most of the protein's energy space [50]. These landscape descriptions 

allude to the possibility 

that a naturally occurring 

protein may not reach its 

global minimum energy 

conformation. This is 

supported by Kaiser's 

experiments that 

uncovered a conformation 

of [Met]-Enkephalin with a 

lower CHARMM energy 

value then previously 

encountered [52]. 

Figure 4: The Glassy 
Funnel 

The most 

promising fitness 

landscape description is 

referred to as the glassy 

behavior [50]. (See 

Figure 4 by [64].)The 

glassy behavior is defined 

by the situation when the 

naturally folded state 

corresponds to a more 

extended region in the 

search space where there 

are many closely located 

minima of approximately 

0.2     0.4     0.6     0.8      1 
P 

FIG. 1. The energy landscape for a folding protein. The major 
phenomonologicai parameters needed to capture this landscape in- 
clude: the width of the runnel at small values of native similarity, 
indicating the entropy of denatured states; the roughness of the 
landscape, AE, which is related to the glass transition temperature, Ts; 
the stability of the native stste relative to the collapsed but non-native 
(molten) globule states, the energy gap. The ribbon diagrams of the 
ct/ß protein, segment Bl of streptococcal protein G (GBJ) provide 
structures from ensembles of unfolded, molten globule, and «alive 
conformations. The folding landscape for GB1 is projected onto two 
coordinates, the radius of gyration, Rs, of the folding globule, and the 
fraction of native contacts, p, which indicates how close the folding 
protein is to the native. The free energy change as folding occurs is 
shown as. a contoured surface: (native) state corresponds to the blue 
region and the most unfavorable unfolded state is represented by the 
green contours. 

the same energy. The differences between the global minimum geometric structure and 
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these false conformations are beyond our current scientific limits to measure8. 

Furthermore, when one of these false conformations is entered into our chosen energy 

model, the resulting energy can differ from the naturally occurring conformation energy 

by only a few kilocalories. Normally, there is only 10 kcal/mol difference between the 

completely folded and unfolded conformation [37]. 

The glassy funnel landscape model combined with the experimental data of rapid 

initial folding followed by a lengthy lag time to reach the global minimum energy state 

explains the Levinthal paradox which has confounded researchers for years. The 

Levinthal paradox simply states that "the time a protein needs to fold is by far not large 

enough to explore even a tiny fraction of all the local minima believed to comprise the 

fitness landscape" [37, 50]. On the other hand, "when the slope towards the native 

conformation is dominant over the ruggedness of the landscape, folding kinetics is 

exponential and [therefore very] fast [50]." This insight allows us to picture the protein 

quickly folding to an orientation near the native conformation - i.e., the initial rapid 

folding period. Then, if we imagine this "near orientation" resting on a relatively smooth 

valley floor, "the lengthy lag period until the protein 'finds' its native conformation" can be 

conjectured as the protein searching this small area. 

2.3 PSP Energy Models 

In order to understand and manipulate proteins, we must be able to reliably 

predict the tertiary structure of the protein in a reasonable amount of time. Generally, 

there are three different methods to uncover the conformation state of a protein: X-ray 

Crystallography, Nuclear Magnetic Resonance, and Computational Models. X-ray 

crystallography and nuclear magnetic resonance spectroscopy are direct methods of 

measuring the position of each atom within a protein. These methods are extremely 

time consuming, error prone, and laborious9! Computational modeling, on the other 

hand, is somewhat less time consuming and easier to conduct, but these methods are 

approximations and may not precisely reflect the native structure of a particular protein. 

Although computational modeling has many shortcomings, it is still an area of utmost 

interest to biochemists because this form of calculating the native structure provides the 

greatest possibility of shortening the gap between the discovery or design of a new 

8 Simulation time steps required to accurately model the folding process are on the order of a 
femtosecond (10'15 second) due to the thermal oscillations of bonded atoms [37]. 
9 See Appendix B. Current Methods for Protein Structure Prediction 
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protein and learning its conformational structure. APPENDIX B provides an overview of 

the x-ray crystallography and nuclear magnetic resonance spectroscopy, and an in- 

depth look at the different forms of computational modeling. 

The particular computational model we are interested in is the CHARMm 

(Chemistry at HARvard using Molecular Mechanics) energy model. CHARMm, 

developed principally by Brooks and Bruccoleri [42], is an empirical energy function 

used in the investigation of the physical properties of a wide variety of molecules. The 

model is executed on a molecule at a particular temperature in a particular solvent 

(usually water). The model is based on separable internal coordinates and pairwise 

non-bonded interaction terms [42]. The model is a composite sum of several molecular 

mechanics equations. Each is decomposed into its terms in the following series of 

equations: 

Equation 5: Bond & Angle Energy Equations 

Equation 5 accounts for bond and angle deformations which in most cases at 

ordinary temperatures and in the absence of chemical reactions are sufficiently small for 

the harmonic approximation to apply [42]. 

£* =   21**1"** cosf"*) 
dihedmte 

Equation 6: Torsion Potential 

The torsion energy term, Equation 6, is a four atom term based on the dihedral 

angle about the axis defined by the middle pair of atoms. For this term, the energy 

constant can be negative (indicating a maximum at the eis conformation10), and there 

may be several contributions with different k* and different periodicity's for a given set of 

four atoms [42]. 

/•-'   =       Tit,,{.(0-0) V 
intpmp?rtdlh&drat$ 

Equation 7: Improper Torsion 

10 See Figure 7. 
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The Improper Torsion term was developed to maintain chirality about a 

tetrahedral extended heavy atom11, and to maintain planarity about certain planar 

atoms12 with a quadratic distortion potential. Without this term, out-of-plane potentials 

tend to be quadratic. In addition, the term provides a better force field near the 

minimum energy geometry [42]. 

Equation 8: Lennard-Jones Potential 

The Lennard-Jones Potential equation accounts for the van der Waals forces of 

attraction and repulsion energy (the Ay and By terms) and the electrostatic attraction and 

repulsion energy [42]. This equation is the major contributor to the overall energy 

calculation. 

\JL* I ■i 
m 

r'.\n     r'.u)\ 
cus'"(0.w, „Ucos'te,,, , „V 

Equation 9: Hydrogen Bonding Energy Reduction 

Equation 9 accounts for a reduction in the van der Waals term between the 

hydrogen atom and the acceptor atom [42]. 

Distance Constraints:  /:,, = ]T Ks (r. 

Dihedral Angle Constraints: 

1o>1 

Equation 10: Water-Water Interaction 

The two equations, in Equation 10, account for water-water interaction when 

manipulating the solute in a water solvent. The distance "constraints" (atomic harmonic 

constraints) are used primarily to avoid large displacements of atoms when minimizing, 

while still allowing the structure to relax. The dihedral angle "constraints" are used to 

maintain certain local conformation or when a series of different conformations need to 

be examined in making potential energy maps [42]. 

&totai —Eb+EB+E^-¥Ew-^rE^jw + Ed 4-Ehb 4-E<:r + E^ 

Equation 11: Complete CHARMm Energy Equation 

12 
E.g., an a carbon without an explicit hydrogen. 
E.g., such as a carbonyl carbon. 
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The CHARMm model is almost a verbatim implementation of Equation 11. The 

terms kb and r0, k0 and 0O, k0 and a», Ay, and By are empirical constants supplied as 

input. These parameters are calculated from "known" protein conformations supplied by 

the Brookhaven Protein Database (the official repository of protein structures) operated 

by the National Institute of Health. The number of bonded atoms, the number of atoms 

forming bond angles, atoms forming dihedral angles, and non-bonded atoms13 are 

determined based on the molecule supplied to the model and can be distinguished prior 

to model execution. 

The AFIT implementation of the CHARMm model does not account for each of 

these terms. In the original implementation by Brinkman and the later revision by Gates, 

the hydrogen bonding reduction and water-water interaction terms are excluded 

because they do not significantly contribute to the overall molecular energy. Therefore, 

the AFIT implementation does not completely model the molecular interactions (see 

Equation 12), and we can imagine AFIT's CHARMm implementation as modeling the 

molecular interactions in a vacuum. This is, of course, a common way to calculate the 

protein structure's energy. 

£|.-«: = '-B + /:'o + '-* + £» + En* + enerzyconstl 

Equation 12: AFIT's CHARMM Implementation 

Furthermore, Gates indicated "other" errors in the primary implementation, and 

he corrected them in order to ensure AFIT's model corresponded with the QUANTA™ 

software package by the addition of the energy constant [14]. 

CHARMm was chosen as our energy function because it models the most 

contributing factors as compared to the other commercially available empirical energy 

function. Table 2 provides a comparison between several currently available empirical 

energy functions of the energy terms they calculate. As the number of energy terms 

included within the model increases, the corresponding complexity/ruggedness of the 

protein energy landscape also tends to increases. The energy models listed in Table 2 

are in order by decreasing complexity of the energy landscape (e.g., CHARMm models 

the most complex landscape of those energy models listed). The smoother the 

landscape the less complex and time consuming it is to calculate the protein structure's 

energy, because fewrer terms are included. Of course, the calculated energy tends to 

be less accurate. 

13 All atoms with three or more bonds separating them are considered non-bonded [15]. 
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Initials           Name Eb E„ E* fcw tnon-bonded Eei Ehb Ecr HÜPB 

CHARMm Chemistry at 
Harvard using 
Molecular 
Mechanics 

X X X X X X X X X 

AFIT 
CHARMm 

X X X X X X 

Amber Assisted Model 
Building with 
Energy Refinement 

X X X X X X 

ECEPP/3 X X X X 
OPLS Optimized 

Potentials for Liquid 
Simulations 

X X X 

Table 2: Comparison Between Commonly used Energy Functions 

2.4 Bounding the Search Space 

Kaiser's work greatly influenced our efforts at constraining the search space of 

the PSP problem. As we know, enumerating the whole (discretized) search space is an 

intractable problem. Therefore, if there were any "generic" way to limit the search 

space, it would be beneficial to incorporate into our algorithm. 

Kaiser covers the basics of the geometry found within the backbone of a 

polypeptide and briefly discusses Ramachandran Plots [37]. But to fully understand 

Ramachandran's work, we must start by defining a peptide unit14. The peptide unit is a 

rigid planar array of four atoms: nitrogen, hydrogen, carbon, and oxygen [22]. The 

peptide unit is considered rigid and planar because the bond between the carbonyl 

carbon (referred to as either CY or C) and the nitrogen atom is not free to rotate. This 

bond has partial double-bond characteristics [22]. (See Figure 5.) 

The peptide unit is the building block of al! proteins. It is also commonly called an amino acid. 
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Figure 5: Partial Double-Bond Characteristics 

Several peptides joined together by purely covalent bonding form a chain called 

a polypeptide [22]. The complete chain of peptide units define the backbone of a 

protein, and once a polypeptide backbone is configured with its appropriate side 

chain(s), it is commonly considered a protein15. 

Rotations about the bonds within the protein are described as torsion or dihedral 

angles that are usually taken to lie between -180° and +180° [22, 63]. There are three 

distinct types of dihedral angles within the protein's backbone. Table 3 lists how they 

are commonly referenced. 

Using these conventions, a protein can be characterized as being in either the 

trans or eis position. The trans position refers to when each of the omega (GO) dihedral 

angles assumes a 180° orientation16 [22, 63]; on the other hand, the eis formation is 

characterized as the co's assuming an 0° orientation. The trans polypeptide form is 

naturally favored over the eis formation by approximately 1000:1, because, in the eis 

form, the Ca atoms and the side chains of the neighboring residue are in too close of 

proximity [63]. The closely positioned side chains greatly influence the pairwise atom 

interaction energy calculated by the repulsion term in the van der Waals equation (refer 

to Equation 8 or B.2.3.1.1.3 Non-Bonded Energy). This term becomes vary large 

when the distance between the atoms involved becomes slightly less then the sum of 

their contact radii [31]. Figure 6 and Figure 7 illustrate the trans and eis formations 

[63]. 

15 Proteins are produced in eukaryotic organisms through the process of transcription which 
begins with the transcribing of the DNA into messager RNA which is then translated into a protein 
in the ribosome [65]. 
16 Protein angle numbering convention use a unit circle where 0° is at the top and -1807+180° is 
at the bottom. Negative degrees are measured counter-clockwise, whereas positive degrees are 
clockwise. 
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Figure 6: The trans Formation 

Figure 7: The eis Formation 

Therefore, if we assume the co dihedral angle is held in the trans position, then 

the phi (O) and psi OF) dihedral angles define the backbone of a polypeptide [37]. 

Allowing slight deviations from the polypeptide's planarity of either the trans or eis 

conformation, by allowing the co angle to deviate by -20° to +10017, is thought to be only 

marginally unfavorable energetically in most peptide bonds [63]. Thereby, all three of 

the angles are responsible for defining the correct folded state of a large molecule. 

Ramachandran et al developed constraints for allowable configurations for 

polypeptides based upon his two-parameter convention. Ramachandran proposed that 

it was possible to rotate around the N-ccC and the aC-CY when the groups were linked at 

the aC atom [61]. Consequently, the relative configuration of two peptide units about 

the ocC atom are specified by just two parameters which he called cb and 0' [61]. (See 

Table 3 for translation.) 
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Bond     Ramachandran    Standard 
N-(xC * * (Phi) 
uC-C 6' \|/ (Psi) 
C'-N — o) (Omega) 

Table 3: Bond Angle Conventions 

The complete configuration of a polypeptide chain is fully specified when each of 

the ocC's parameters (<|>, §') are known [61]. Furthermore, Ramachandran developed a 

set of allowable regions for these parameters based upon his choice of permissible van 

der Waals contact distances using a hard sphere model of the atoms and fixed 

geometries of the bonds18 [61, 63]. Table 4 has a comparison of permissible van der 

Waals distances as defined by Ramachandran and by Stryer [22, 63]. Ramachandran 

concluded that two sets of bounds were possible. These bounds, termed "normally 

allowed" and "outer limit," were derived from a detailed analysis of available structural 

data including amino acids and peptides [61]. 

Contact 
Ramachandran Stryer 

Normally Allowed     Outer Limit        Radii 

C...C 3.20 3.00 4.0 
C...0 2.80 2.70 3.4 
C...N 2.90 2.80 3.5 
C...H 2.40 2.20 3.2 
o..,o 2.80 2.70 2.8 
O...N 2.70 2.60 2.9 
O...H 2.40 2.20 2.6 
N...N 2.70 2.60 3.0 
N...H 2.40 2.20 2.7 
H...H 2.00 1.90 2.4 

Table 4: Comparison of van der Waals Contact Distances 

Based upon his steric constraints, "the permitted ranges for (§, §') were obtained, 

shown in Figure 8 [61], corresponding to an angle of 110° between the N0-aCi and ccCr 

Cy1 at the cc-carbon atom [61]. "When we allow this angle to vary slight from 105° to 

115°, the allowed regions are altered slightly [61]". 

17 

18 
For the trans conformation, the range of co is -160° to +170°. 
Commonly, refer to as Steric Constraints. 
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Figure 8: Original Ramachandran Plot 

Our proposed constraint system is heavily based upon the work and results of 

Kaiser and the Ramachandran Plot. Kaiser's constrained-GA made use of an existing 

GA package, GENOCOP III. He incorporated his constraint system directly into the 

GA's manipulation of the chromosome [37], but his constrained-GA could not generate 

an initial population of 50 members using his defined feasible solution space because 

the feasible search space is much smaller than the entire search space [37, 52]. 

Therefore, Kaiser had to use a hand picked initial population. 

It is commonly understood that any constraints placed upon a GA hampers its 

execution time. Normally, GAs have two choices when they encounter "disallowed" 

chromosomes: 1) excluded and replace19, or 2) repair the chromosome. If the 

disallowed chromosome is excluded and replaced, we may find that the GA spends an 

overwhelming amount of time finding "allowable" chromosomes, depending upon the 

ratio between the "allowable" search space and the "complete" search space. On the 

other hand, if we repair every "disallowed" chromosome, the GA must first recognize 

"why" the chromosome is not allowed and then repair the particular gene(s) in violation. 

This operation usually overwhelms the GA because it now must have problem domain 

19 Kaiser's implementation followed this method. 
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information embedded within its algorithm. Summarizing Kaiser's work leads to the 

conclusion that constraints on the search space are "good," but his implementation lead 

to preconvergence and "islands" of feasible solutions that didn't allow his GA to traverse 

the search space to find the optimum solution [37]. 

What we propose is a better way to overcome the preconvergence and "islands" 

of feasible solutions situation. Our system guarantees that the chromosome encoding 

mechanism ensures that the allowable genes are represented and maintained 

throughout all GA operations. 
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Figure 9: Stryer's Ramachandran Plot 

We have devised another scheme to represent the search space using the 

Ramachandran Plots and affine transformations on the x- and y-axis that ensures all GA 

operators retain "feasible" solutions. The Ramachandran Plot is the key to our system! 

At first glance, Figure 9 [22] makes it seem as if there are four distinct allowable regions 

based upon the values specified for (O, \\f). But after a simple coordinate 

transformation, it is easy to see that the Ramachandran Plot doesn't actually create four 
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regions, but rather just one smaller region within the complete space illustrated in 

Figure 10. The transformation is mathematically defined as: 

If®     < 180° then 4>     , =<I> tuzw                                      ÄÖ/&K«             new 

lf<l>     > ISu" then 

O      , = lO     - 360° 

ffV^SlSO0 «ie^,ilTOi=v„ 

My        = * normal ^-360°! 

Equation 13: 1st Coordinate Transformation 

Still there are "infeasible" regions within Figure 10. (i.e., The white space 

surrounding the yellow and green colored "bubble" represents unreachable <E> and \\f 

angles.) Therefore, we have relocated the coordinate system origin, (0,0), to 

correspond to two tangent lines and restricted the lengths of the axes to only span the 

feasible region - see Figure 10 and Figure 11. 

360' 

CO 

< 

Li 

IP 

o° O-Axis 
^ 
360° 

Figure 10: Applying 1st Transform 
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pä" 

2o8tSfF~,,..-,.Ti , ...,..>>,—p-MpiL,—, 

O-Axis 36°° 

Figure 11: Repositioning the Origin 

Now, the new O-axis (called O'-axis) corresponds to a tangent which intersects 

the point in the feasible region closet to the original <E>-axis, and likewise for the \|/-axis 

(called vj/'-axis). In past implementations, we have always assumed that the 

chromosomal encoding beginning at the origin (0°) and proceeding to 360°, represented 

by 2° to 210 respectively. But with this new coordinate system, this is no longer the case! 
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The new (0,0) coordinate at the <I>'-axis/Y|/'-axis intersection is approximately 20  up the 

\|/-axis and 40° down the O-axis. Furthermore, the upper bounds of the O'-axis and v|/'- 

axis are less by approximately 36° and 50°, respectively. This second transformation is 

mathematically defined by: 

ru-     _<T)     )\ 

new 
360s 

+ 4' m i' 

»nd Equation 14: 2   Coordinate Transformation 

Figure 12 illustrates the 2   transformation for the O-axis to the O'-axis. 

lower 

40° / 2° 
upper 

324° / 210 

I I > I 'I V 

0LAxis 

0°/ 2C "■""^^^■^^■^l 

O -Axis 360° / 21 

Figure 12: O-Axis Transformation 

Our scheme allows the GA to process the chromosome's backbone independent 

of representation and guarantees that for all GA operators the transformed chromosome 

is in the defined "feasible" region of the Ramachandran Plot. These transformations 

only work for the polypeptide backbone configuration and does not account for side 

chains! 

For the side chains, we consulted with Dr. Ruth Pachter (AFRL) to determine 

feasible ranges. Dr. Pachter validated the % angles, as well as the backbone angles, 

proposed by Kaiser [37]. Therefore, the ranges he proposed for the backbone angles 

and side chains are used as our limits as well. This allows us to make direct 

comparison between his work and ours. Our constraint system incorporates the 

chromosome encoding explicitly (see Table 5 and Table 6 for our limits [15, 37]), and 

the transformations into the proper angular configurations are accomplished in the 

objective function (e.g., within AFIT's CHARMm energy model implementation). This 

ensures that all future AFIT PSP researchers can use any contribution from this 
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constraint system without having to manipulate their particular GA of choice. Appendix 

I contains Newman projections illustrating the constraints in Table 5 and Table 6. 

Dihedral Midpoint Radius "min "max 

>PjKjn-qlvclne -120 90 -210 -30 

 Wgivcine -180 135 -315 -45 

V 60 150 -90 210 
CO -180 20 -200 -160 

71 -60 160 1180 30 -75 145 1-185 -45 175 1-165 

Table 5: Loose Constraints for [Met]-Enkephalin 

Dihedral Midpoint Radius «min wmax 

<& -67.5 22.5 -90 -45 

V -30 30 -60 0 
<a 180 20 -200 -160 

Xi -60 160 1180 30 -65 155 1-185 -30 190 1-150 

Table 6: Loose Constraints for Polyalanine 

2.5 Visualizing the Search Space 

Visualizing the search space traversed by the GA is simply mind-boggling. If we 

assume the standard AFIT representation of 10 bits per dihedral angle and account for 

each dihedral angle in [Met]-Enkephalin on the x-axis, we yield a 240 bit representation 

for each chromosome which indicates one energy value on the y-axis. Since the x-axis 

is discretized, we can reduce this seemingly continuous line into a fixed interval using 

the natural numbers. Therefore, we have 1.7668e+72 numbers across the bottom of a 

2-dimensional graph. This number of x-values makes the problem of visualizing the 

GA's traversal through the energy landscape beyond the scope of available software 

tools and computational platforms. On the other hand, the requirement to understand 

this space remains. The purpose of this section is to explain how we intend to 

graphically visualize the PSP landscape. 

Ideally, the best way to visualize the relationship between the molecule and the 

energy landscape would be in 8-dimensional space where 8 represents the number of 
20 

dihedral angles. This would reduce the problem to graphing 1024 points   on each axis. 

Alas, there is also no mathematical way to represent 24-dimensional space. Therefore, 

we have derived a technique to reduce the numerical span of the first purposed 

visualization methodology to approximately 1934 points which is graphable using 

Mathlab TM 
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Mathematically, we have used a p-norm projection across the x-axis to make the 

discrete range of 2240 into a metric data scale using Equation 15 where p = 5. 

d(fn. fin) j\ptP(D^a)-P^Dm,a)\p+\P1P(D^)-Pw(Dm,a)'i'')ia 

Equation 15: p-norm 

Therefore, each 10-bit representation of a dihedral angle is a separate PFp term within 

the equation. This transformation ensures that the representational distance between 

the x-axis values is maintained. Other norms were considered, but since we were trying 

to compress the data in order to produce a visualization which would easily fit on a 

single page without a reduction size the 5th-norm worked the best. Figure 13 shows the 

compression rate of the a few different norms. The quicker the curve grows the more 

the data is compressed, but the representational distance between any two points on 

the x-axis is maintained! 

20 Each dihedral angle is represented by 210 or 1024 discrete values. 
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Figure 13: P-Norm Comparison 

The y-axis, on the other hand, still represents the continuous real value range of 

the energy function. Since we are really interested in a small range of negative values 

and because it is not uncommon to have a 1e+32 energy value associated with a 

molecule, we have chosen to bound the upper limits of the y-axis to +25 kilocalories. 

The remaining energy values are illustrated upon the graph by exploiting colored 

graphical gamut's located at zero and the x-axis intersection. Table 7 indicates the 

color meaning and Figure 14 shows some initial test data reduced as stated here. 

Color                        Range 
BLACK (•) .*» _» +25,0 
BLUE (x) -25.01    »1.000 
Yellow I A) 1.000.01    > 1.000.000 
Red (♦) 1,000.000.1 ->~ 

Table 7: Visualization Legend 
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Figure 14: Energy Landscape Visualization 

2.6 Summary 

As this chapter indicates, the energy/search landscape of the PSP problem is 

huge, extremely complex, and poorly understood. Therefore, there can be enormous 

benefits reaped by constraining the space using accepted work from the PSP 

community, hence, our development of constraints. Kaiser [37] was on the right path 

when he developed the constraints on the dihedral angle, but his implementation left 

some modularity to be desired. Our new implementation restricts the search space just 

as effectively, may prove to be more efficient, and allows for a modular design by 

incorporation into the fitness function. Finally, our attempt to visualize the search space 

may lead to a greater understanding of the CHARMm energy landscape discretized by 

using 10 bits per dihedral angle. We could discover, however, that this discretization 

prohibits us from finding the global minimum conformation energy because our 

discretization scheme is too coarse. The next chapter discusses the different genetic 
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algorithms we investigated, and Chapter 4 provides implementation details for our 

constraint system. 
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3.0 Linkage Investigating Genetic Algorithms (LIGAs) 

3.1 Introduction 

Due to the simple genetic algorithm's (SGAs) inefficiency in applications 

involving a high degree of deception21, some genetic algorithm (GA) researchers 

conceived and gave birth to the family of linkage investigating genetic algorithms 

(LIGAs) [1, 2, 4, 5, 7, 8, 9]. The LIGA class of GAs explicitly emphasizes the 

importance and use of building blocks. Building blocks are schemata comprised of 

tightly linked genes. They consist of coupled values (locus/allele pairs) that work well 

together and tend to lead to improved performance when incorporated into a complete 

chromosome [13]. The biological concept reflecting "tightly linked genes" (i.e., the 

concept of linkage) refers to such bits acting as "co-adapted alleles" that tend to be 

inherited as a block (i.e., the building block) [6]. The defining length of a building block 

measures linkage. The defining length is the distance between the first and last bit of a 

building block, and it is a direct measure of how many crossover points fall within this 

significant portion the corresponding schema. This length determines the probability 

that the building block is disrupted during crossover [6]. As the defining length of a 

building block approaches the length of the chromosome, the probability of disruption 

increases because the crossover point probably occurs within the building block! The 

Schema Theorem, which implies that by passing on "good" schemata to the next 

generation increases the likelihood of finding better solutions, provides the symbolic 

foundation for searching and propagating building blocks with low order defining lengths 

[6]. 

In the remaining sections of this chapter, we explain and examine several 

different forms of genetic algorithms designed to uncover and propagate building blocks. 

This discussion of different types of LIGAs is not all encompassing nor is it intended to 

be complete because many linkage learning or building block propagating genetic 

algorithms have been proposed [1, 2, 4, 5, 7, 8, 9, 10,11, 12]. 

3.2 Problems with the SGA 

The LIGA class of GAs tries to combat two bottlenecks of the SGA proposed by 

Kargupta: 1) the combination of relation, class, and sample spaces, and 2) poor search 
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mechanisms for gene relations [9]. Kargupta explains that the first bottleneck derives 

from using a single population as the genetic pool. The relation, class, and sample 

spaces are combined with the decision making process. Therefore, each space affects 

the others in some undesirable way. The relation space defines "classes" in terms of 

the gene sequences within the chromosome. The class space equates to the building 

blocks found in the chromosome, and the sum total of all the chromosomes or the GA's 

population is the sample space [9]. A real-world example would be "inbreeding." In 

human populations where inbreeding is common, we find that the inhabitants 

demonstrate similar characteristics (i.e. the sample space). These characteristics are 

dominated by nearly identical DNA (i.e. class space elements) because the DNA is 

defined by a few nucleotide templates (i.e. relation space). 

The other bottleneck can be contributed to the encoding of the typical SGA 

chromosome. Fixed-length and fixed-position genes characterize the SGA class of 

GAs. When the defining length of a relationship between genes grows large compared 

to the total length of the chromosome, the likelihood of disruption occurring during 

crossover grows exponentially. Therefore, the SGA is best suited for evaluating and 

processing only those relations that are defined over positions close to one another [9]. 

The family of LIGAs does not share this characteristic and as a result does not suffer 

from this bottleneck. 

3.3 Survey of Current LIGAs 

Almost all of the LIGAs discussed are based upon the Schema Theorem 

presented first by Holland in 1975 [6]. However, they only adequately address the 

single population SGA problem proposed by Kargupta [9]. The Schema Theorem 

simply states that "short, lower-order, above average schemata receive exponentially 

increasing trials in subsequent generations" [6] and three of the four LIGAs discussed 

follow this model explicitly. The other, the selfish gene algorithm [4, 5], follows the 

model implicitly, which is made evident in its discussion. The combination of relation, 

class, and sample spaces is partially handled by most LIGAs, but the complexity of this 

"evolutionary concept" is not yet well understood. The concept is partially based upon 

the meiosis and the production of gamete processes [10]. Therefore, until "we" can 

adequately explain how these operations execute in "real-world" evolutionary processes, 

21 This class of problems is characterized by having coding function combinations that have 
misleading low-order building blocks which cause the GA to converge to sub-optimal points. 
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all attempts to model them in GAs will be only poor approximations of the complex 

natural process. 

3.3.1  Messy Genetic Algorithm (mGA) 

No discussion of the LIGA family of GAs would be complete without discussing 

the forerunner of all LIGAs: the messy GA (mGA). The mGA proposed by Goldberg et 

al., in 1989, was a major paradigm shift for its time. The mGA was the first to suggest 

moving from "neat coding and operators" to allowing variable-length strings that may be 

under- or over-specified with respects to the problem being solved [1]. The original 

mGA was designed to handle the "deception problem," but its usefulness is not limited 

to this realm. It is at least as efficient and effective as the simple genetic algorithm on 

both deceptive and non-deceptive problems in some test cases. Goldberg's originally 

proposed mGA was fashioned from his view that nature's climb out of the primordium 

occurred with genotypes that exhibit redundancy, over-specification, under-specification, 

changing length, and changing structure [1]22. 

3.3.1.1  Chromosome Representation 

Goldberg developed the mGA chromosome to allow for a relaxation in the coding 

of the gene by assigning each gene a "value," called an allele, and a "location," called a 

locus (e.g. {(allele, locus)}). Then, he took no steps to ensure that any particular 

chromosome contained a full complement of allele/loci pairs, nor to prevent redundant 

pairs, in accordance with his view of evolution. This led to two closely related problems. 

How to handle over-specified and under-specified genes within a chromosome. Over- 

specification occurs when a chromosome contains two genes that have the same locus 

value but differing allele values. The problem is: what phenotype should the 

chromosome express when there are two competing gene alleles for a particular locus? 

Goldberg's solution to over-specification was to simply use positional precedence 

because of its simplicity. As the name suggests, positional precedence is based on a 

left-to-right scan of the gene with a first-come-first-served attitude when constructing a 

"complete" gene for a fitness evaluation. Figure 15 illustrates how Goldberg envisioned 

the mGA's positional precedence operation23. 

22 Appendix E.1 contains additional clarification of some mGA operations. 
23 Theoritical uses of the positional precedence operator is discussed in Appendix E.1 a 
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Positional 
Precedence^ 

1 (1,0)   I (1,1)   I (3,1)   | (2,0)   | 1 (1,0)  I (2,0)   | (3,1)   | 

Chromosome Used in Fitness 
Evaluation Original Chromosome 

' 1/ 

Figure 15: mGA Positional Precedence at Work 

Under-specification is a much more difficult problem to overcome and is handled 

in a different and not so simplistic fashion. Goldberg originally assumed that the fitness 

function could be handled as a sum of non-overlapping subfunctions. This assumption 

allowed the mGA to evaluate every member of a population and compare them based 

on an "average" fitness [1]24. This initial simplifying assumption proved not very useful 

nor scalable to "real-world" problems, and the handling of under-specified genes evolved 

into the use of a competitive template to "fill in the gaps" of the partially specified 

solutions. The competitive template method uses an a priori defined "locally" optimal 

template to fill in the missing bits of the partial solution. The locally optimal template is 

used to provide missing genes within the chromosome. This allows the fitness function 

to evaluate a completely specified chromosome25. 

3.3.1.2 mGA Algorithmic Phases 

The mGA consists of three phases: partially enumerative initialization, primordial 

phase, and juxtapositionalphase. In the partially enumerative initialization (PEI) phase, 

at least one copy of each possible building blocks of a specified size is created. These 

partial solutions make up the initial population26, in contrast to random initialization found 

in most other forms of GAs. This phase is analogous to the predawn of life on earth 

when the sea was considered a "primordial soup" as first suggested by Russian scientist 

Alexander Oparin [67]. The primordial and juxtapositional phases can be thought of as 

two phases of selection. 

In the primordial phase, the proportion of good building blocks is enriched 

through a number of generations undergoing reproduction without any other genetic 

operations. The objective is to create an enriched population of building blocks whose 

combination should create optimal or near optimal strings. Suboptimality of the final 

24 Each chromosome was evaluated by all possible fitness subfunctions then divided by the 
number of subfunctions to return an average fitness. 
25 Refer to Appendix E.1b for an in depth discussion of the competitive template. 
26 Appendix E.1c contains a complete description of PEI. 
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solution is possible, because the initial population instantiated by PEI does contain 

suboptimal building blocks. In some sense, we can think of this phase as a "weeding- 

out" of these suboptimal blocks. To meet this end goal, tournament selection is applied 

to the PEI generated population [15]. Tournament selection27 is the only active operator 

during the primordial phase. Then, as selection proceeds, the population size is 

reduced by factor of two at regular intervals. This serves two purposes. First there is no 

need to maintain the population size associated with PEI once the better of the building 

blocks are chosen, and secondly the mGA reduces the population size in order for the 

population to be effectively and efficiently processed by the juxtapositional phase. 

The juxtapositional phase resembles the usual processing of a SGA except the 

strings can vary in length. This phase proceeds with a fixed population size and the 

invocation of reproduction, cut-and-splice operators28, and other genetic operators which 

can be included29. Cut-and-splice was a novel contribution of the mGA to the realm of 

GA knowledge, and it acts to recombine the enriched proportions of building blocks 

passed on by the PEI and primordial phases. As long as the string lengths remain low, 

the action of cut-and-splice is likely to be as non-disruptive as simple crossover [1]. 

A high-level example of a mGA coding is provided in Algorithm 1: 

27 Tournament selection was used by Goldberg in his work, but any form of selection operator 
can be subsituted. 
28 Appendix E.1d discusses this operator in terms of one-point crossover. 
29 In Goldberg's original study, he used reproduction and cut-and-splice, but he eluded to the 
possibility of incorporating mutation. 
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Program ni<JA 

Do /*oulcr loop*/ 

Evaluate Fitness of each Member or the Population 
Do /*primordial phase*/ 

Sclection(Tou rnament) 
Reproduction 
If (appropriate number of gem-rations accomplished) Then 

Reduce Population Size 
lllllHIIBlllI^ 

} until the maximum number of Primordial Phase are 
accomplished 

Do /*juxtapositional phase*/ 

iSlllIH^ 
Cut..And_ Splice Operator 
Other GA Operations 
Evaluate Fitness of each Member of the Population 
Selection! Tournament) 

} until some stopping condition is met 
Sa\e best solution as next kth-order iteration's template 

} until problem domain's order of deception is accomplished 
Save "best" solution found as finally output 

Algorithm 1: mGA Pseudo-Code 

3.4 Selfish Gene Genetic Algorithm (SG GA) 

The SG GA proposed by Corno, Reorda and Squillero (1998) follows a 

somewhat nontraditional view of evolution. A "traditional" GA follows the evolutionary 

views proposed under Darwinism. Their common underlying assumption is the 

existence of a population of individuals that strive for survival and reproduction [4]. The 

basic unit of evolution in these traditional algorithms is the individual, and their goal is to 

find an individual of maximal fitness [4]. On the other hand, the SG GA follows a 

recently proposed view of evolution where the fundamental unit of natural selection is 

the gene rather than the individual. The selfish gene theory of evolution, proposed by 

Richard Dawkins in 1976, claims that whereas the individual eventually does not survive, 

but the genome of the individual is able to replicate itself into subsequent generations 

potentially indefinitely [4]. In the population, the important aspect is not the fitness of 
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each individual, since those individuals are mortal, (e.g., their "good" qualities are lost 

with their deaths [4].) For instance, in the ideal case a child of a diploid organism 

receives half of the genes from one parent and half from the other. Therefore, a 

grandchild only represents a fourth of each grandparent's genes, and so on (see Figure 

16). 

Parent1 

48 Genes 

Child 

Parent2 

New 
Mate 

m                   I 

New 
Mate 

24 24 
48 Genes 

(Reproduction) . 

1/2               1/2 

48 Genes 

Grandchild 

24    24 
48 Genes 

•  (Reproduction)   r 

1/4   1/4          1/2 

48 Genes 

Great 
Grandchi 

             I 
24    24 

IH 

48 Genes 

■ M 
1/81/8 1/4         1/2 

48 Genes 

Figure 16: Propagation of a Chromosome Fragment 

Individuals, therefore, are viewed as fleeting in the sense that their "life" in 

evolutionary terms is nearly spontaneous because the evolutionary process takes eons. 

On the other hand, genes live forever in the sense that a fragment of a chromosome 

survives the individual and is replicated in its offspring: the gene survives the death of 

the individual. In the selfish gene concept of evolution, individual genes strive for 

appearance in the genotype of the individuals, whereas the individual is nothing more 

than a vehicle allowing the genes to reproduce. Due to the shuffling of genes that takes 

place during sexual reproduction, "good" genes (i.e., good building blocks) are viewed 

as those genes that, when combined with other genes, give higher reproduction 

probabilities to the offspring [4]. For example, if a gene is able to produce a useful 

characteristic, then the individual with that characteristic (gene) in their genome has a 

higher probability of breeding. Thus, such genes have a higher probability to spread in 

the gene pool and therefore receive greater representation in future generations30. 

30 Appendix E.2 begins the additional coverage of the SG GA. 
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3.4.1 SG GA Chromosome Representation 

Since the SG GA does not maintain an instantiated population of individuals, the 

SG GA relies upon a virtual population. The virtual population is an abstract model 

aimed at representing the gene pool concept defined by Dawkins. The gene pool is a 

collection of all possible allele values for each locus position in the genome. As in the 

mGA, each gene is given a value and a position. 

Since individuals do not persist in the SG algorithm, and therefore "fitness" is not 

associated with any particular set of genes, the SG algorithm models reproduction 

through its effects on statistical parameters that model the virtual gene pool. The 

statistical parameters model the virtual population at two levels. First, the success of a 

particular allele is measured by the frequency with which it appears in the virtual 

population. Since any locus can take-on any one of several alleles, the probability of 

expression of each allele, independent of the alleles found in other loci, is stored as a 

component of a marginal probability vector (MPV) for each locus (L), (i.e., the MPVU = 

{ai, a2, a3, etc}). The marginal probability vector is a collection of frequencies for each 

value an allele can assume. At the next level, the virtual population is statistically 

characterized by the collection of marginal probability vectors (MPVtotai) for the various 

loci. The collection is stored in a single array where the length of the array equates to 

the number of loci and at each cell of the array there is the marginal probability vector 

for that particular locus (i.e., MPVtotai = {MPVL1, MPvla, MPVL3, etc}). It is important to 

note that the MPVtotai is not required to be square because each locus is allowed to have 

its own allelic alphabet. 

3.4.2 SG GA Algorithmic Phases 

The SG GA follows two steps in its processing: 1) initialize gene pool and 2) 

reproduction based on fitness and tournament selection. Initialization of the gene pool 

is motivated by the principles outlined above in the discussion of the virtual population. 

All possible genes are created and the marginal statistical probability vectors are 

calculated for the complete virtual gene pool31. The virtual gene pool starts with all 

alleles for each locus having an equal probability of expression. The probability of 

expression for each allele evolves through the process of reproduction. 

Appendix E.2a investigates the growth rate of the virtual gene pool as the length of a 
chromosome increases. 
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The process of reproduction is discussed as three phases: generation of 

individuals, tournament selection, and replication. An individual is created/formed only 

when needed for competing in a tournament, and then it is immediately discarded [4]. 

Two individuals are created from the virtual gene pool. For each locus in each 

chromosome, the allele chosen for the representation in the individual is either selected 

by mutation or based on the MPV. If mutation is warranted, a random allele chosen 

uniformly from the locus' allelic alphabet set is used. Mutation is modeled by random 

occurrence with a very low probability (Pm)32- 

If random _number(OA) < l'm then chose 

random allele 

Equation 16: Selfish Gene Model of Mutation 

Next, these two individuals undergo tournament selection based upon their 

phenotypical characteristics, and the one with the higher fitness is considered the 

winner. Finally, all alleles appearing in the winning individual/chromosome slightly 

increase their probability of expression in their respective loci in the virtual population; 

the losing chromosome's alleles are proportionally decreased in the corresponding loci. 

The allele frequencies are increased/decreased by some predetermined constant (e)33. 

This form of replication is not considered asexual reproduction because of 

reshuffling the genes creates a blind cooperation between genes in the winning 

"individual." The rewarded alleles are selected together with other alleles, in other loci, 

different from the ones appearing in the former winner [5], therefore this new winner is 

not an identical copy of the former winner as would be the case in asexual reproduction. 

This process continues until some stopping condition is reached. Corno's initial 

SG GA stopped when the genetic algorithm reached a steady state. The SG GA 

defines a steady state exist, for each locus I, of an allele (a,v) whose probability of 

expression is over a given threshold pt
34 [4, 5]. Mathematically, the steady state is 

defined as: 

V7 : max, (,«■■) > p. 

Equation 17: SG Steady State 

32 Appendix E.2b discusses SG GA mutation in terms of convergence rate. 
33 Appendix E.2c analyzes this epsilon feedback loop. 
34 pt values are usually around 0.95 
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When this condition is met, all individuals modeled by the virtual population are very 

similar. In fact, if not for random mutation they would be identical. Therefore, the virtual 

population is not likely to evolve any more [4]. 

A high-level example of a SG GA code is provided in Algorithm 2: 

Program SG 

initialization 
lll^ 

Select individuals 
Determine fitness of each individual 
If (fitness of individual]) < (fitness of individual) 

Reward allelcs (individual^ 
Penalize alleles (individual;) 

Reward allelcs {individual}) 
Penalize alieles (individual0 

Discard individuals 
} while (stopping condition is not reached) 

Algorithm 2: SG GA Psuedo-Code 

3.5 Gene Expression Messy Genetic Algorithm (GEMGA) 

GEMGA35 is another compelling investigation into the linkages between genes as 

proposed by Kargupta in 1996. GEMGA's foundation is rooted in an alternate 

perspective of blackbox optimization (BBO) in terms of relations, classes, and partial 

ordering which Kargupta coins as SEARCH (Search Envisioned As Relation and Class 

Hierarchizing) [9,10, 11, 45]. SEARCH is motivated by the observation that searching 

for optimal solutions in BBO is essentially an inductive process and in absence of any 

relation among the members of the search space, induction is no better than 

enumeration [11]. SEARCH (a compete description can be found in [9]) decomposes 

BBO into three spaces: 1) relation, 2) class, and 3) sample space [9, 11]. Relations 

divide the sample space into different classes. The sample space is the area we are 

searching, and the classes delineated by the relations can be viewed as a pruning 

mechanism. If the algorithm divides the sample space into relations, we can order the 

classes based upon "better" relations and organize the members of each class based 

35 Appendix E.3 begins the additional discussion of GEMGA. 
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upon their "goodness contribution" to the relation. In this manner, we have effectively 

pruned the search space by discounting the "lesser" classes because they represent 

worse relations in the sample space. There are five major components to SEARCH 

(see Figure 17), and GEMGA is a distributed implementation of each of these steps. 

• Classification of the search space using relation 
• Sampling 
• Evaluation, ordering, and selection of better classes 
• Evaluation, ordering, and selection of better relations 
• Resolution 

Figure 17: Steps of SEARCH 

3.5.1 Chromosome Representation 

According to the originally proposed definition of "messy" by Goldberg, GEMGA 

is not messy at all. GEMGA does not allow under- or over-specification. Instead, it 

follows the more traditional views of a fixed length fully specified chromosome. The 

chromosome representation found in GEMGA is fixed length string where each member 

(gene) is a complex data type similar to the one presented in the mGA. Each gene 

representation in GEMGA contains three values: the locus, allele, and weight [9]36. 

Besides genes, the chromosome also contains a dynamic list of lists called the 

linkage set [10]. The linkage set replaced the gene characteristic of the linkage set 

found in earlier versions of GEMGA. The purpose of the linkage set is to define a set of 

genes that are related for each locus. The linkage set is actually comprised of a list of 

weighted lists, called locuslist. Each locuslist contains three related factors: the weight, 

goodness, and trials. The weight measures the number of times that the genes in the 

locuslist are found to be related in the population, whereas, the goodness relates how 

strong the linkage of the genes are in terms of their contribution to the overall fitness of 

the chromosome. Finally, the trial field indicates the number of times this linkage set 

has been tried [10]. The whole gene representation and linkage set collogue defines the 

relation space of the GEMGA population. (See Figure 18) 

36 Appendix E.3a explains each of these gene characteristics. 

43 



Gene. Gene, :?;SIS:::::K : \\ $ $$8$^$SMi^ Genen Linkage Set, Linkage Set n 

Locus Locus Locus Locus Locus List .ocus List .ocus List 
Value Value Value Value weight weight weight 

Capacity Capacity Capacity Capacity goodness goodness goodness 
trials trials trials 

A                      Static Size                      A Dynamically increasinc ] in Size k. 

° Figure 18: GEMGA Chromosome Representation 

3.5.2 Algorithmic Phases 

The GEMGA algorithm has three phases: Initialization, Transcription stage 

(formerly Primordial Phase [9,11, and 45]), and RecombinationExpression stage 

(formerly Juxtapositional Phase [9, 11, and 45]) [10]. Note that in the GEMGA 

documentation, Kargupta specifies that GEMGA only has two stages, Transcription, and 

RecombinationExpression. He assumes that the algorithm's population has already 

been initialized [10]. During initialization, GEMGA creates the initial random population 

of chromosomes under the requirement that at least 1 instance of the optimal order-k 

class must be in the population37. In order for the population to contain at least a single 

A|   members 

where c is some constant that depends upon the variation of fitness values of the 

members of schema [10], and IAI is the cardinality of the alphabet. Since in practice the 

order of delineability is unknown, Kargupta suggests that the choice of a population's 

size determines what order-k relationship GEMGA should process [10]. Therefore, after 

some algebraic manipulation, he presents the following equation: 38 

log 
Üi 

Jt = i 
Jog A 

Equation 18: GEMGA Population Requirement 

During the Transcription stage, the transcription operator is applied 

deterministically for all £ genes in every chromosome of the population for £ generations 

[10]. The transcription operator applies a random subset of all alphabet transformations 

Order-k represents the complexity of the linkage GEMGA is investigating. 
Appendix E.3b explores the population requirements encouraged by this equation. 
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to every gene one at a time39. The value of the gene is flipped to a different element of 

the allelic alphabet and the change in the fitness value is noted. For example, if a 

chromosome of length 4 were encoded using a binary representation, then in the first 

generation the first bit would be flipped for every member of the population. Next, each 

chromosome would undergo a fitness evaluation to determine if the particular bit flip 

improved the overall fitness of the chromosome. 

If the chromosome's fitness improves as a result of one of these changes, then 

the original chromosome is not likely to be a member of the optimal schema defined 

over a partition that subsumes the gene under observation. On the other hand, if the 

fitness worsens, then perhaps the gene belongs to a good class - i.e., it has strong 

linkage40. 

Once the chromosome's fitness is evaluated, the capacity of that gene is set to 

either 1 (the gene has a capacity to change) or 0 (the gene has no capacity to change). 

The choice depends on whether the mutation of the allele value had a positive or 

negative effect of the chromosome's overall fitness. 

Once all the alleles have been examined, those genes whose capacity changed 

to zero are collected and stored in the first element of the linkage set for each 

chromosome. These genes are called the initial linkage set. The transcription 

operator only changes each gene's capacity and initiates the formation of the 

chromosome's linkage sets. At the end of this stage, the chromosome has its initial 

fitness and configuration restored [10]. 

Once the transcription phase is complete, the RecombinationExpression phase 

begins with the "modified" population. The RecombinationExpression stage is actually 

two separate subphases: PreRecombinationExpression and RecombinationExpression. 

The RecombinationExpression phase continually applies these two subphase until some 

predefined stopping condition is met41. A high-level example of a GEMGA genetic 

algorithm coding is provided in Algorithm 3: 

39 In the case of a small allelic alphabet, it is assumed GEMGA progresses through all possible 
allelic values. 
40 The scenario is for a minimization problem -- reverse for a maximizing optimization problem. 
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Program GKMüA 

Initiali/alion /* Initialize Random Population */ 

Do /* Find Better Relations */ 

IIIBIH^ 
Apply Transcription Operator 

} Until (j == problem - length; 
for (i=0. i <= NumberoftriaK, i++'i  /" Define Relations Between Genes */ 

Apply PreRecombinationExpresMon Operator 
Do /* Selection and Crossover */ 

IB 
Apply GLMGA Recombination 

} Until {some stopping condition has not tven meet) 

Algorithm 3: GEMGA Pseudo-Code 

3.6 Linkage Learning Genetic Algorithm (LLGA) 

The LLGA is another attempt by Goldberg and his students to find/create a 

competent GA. Goldberg defines a competent GA as one that "can solve problems of 

bounded difficulty quickly, reliably, and accurately [8]." The LLGA was first proposed as 

a new linkage-investigating algorithm by Harik in 1996. Harik argues that other 

implementations of GAs do not take explicit advantage of "tight linkages" early enough 

in their algorithmic processing. If they did (as does the LLGA), then they would be able 

to solve "difficult problems [7]." The LLGA takes advantage of tight linkages between 

genes by using a new two-point crossover operator and a different chromosome 

representation. 

In order to understand the LLGA, we must comprehend Harik's etal.'s new 

definition of building block linkage that only applies to this genetic algorithm. According 

to the LLGA research, building block linkage is defined as the probability'that building 

blocks are conserved under whichever crossover operator is used [1]. This definition 

contrasts with the popular view of "building block linkage" present by Whitley [6] and 

earlier Goldberg papers [1, 2]. Whitley and Goldberg equate linkage with physical 

adjacency on a string as measured by defining length, and defining length is based on 

the distance between the first and last bits in the schema [6]. 

41 Appendix E.3c defines the RecombinationExpression phase. 
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Normally, the GA community considers building block linkage to mean the 

definition supplied by Whitely (and others), and we will refer to that definition as the 

classical building block linkage definition while discussing the LLGA to avoid confusion. 

Harik, on the other hand, argues that although this definition is appropriate for one-point 

crossover, it is imprecise for other crossover operators such as uniform and two-point 

crossover [17]. His new crossover operator is a variant of two-point crossover, and 

thus, he uses two-point crossover as a means to explain his building block linkage 

definition. 

We can picture two-point crossover operator as treating the chromosome as a 

string of beads connected in a circular list. If we imagine a fixed circumference 

necklace as the number of beads within the necklace grows to infinity, the thickness of 

each individual bead drops to zero [7, 17]. Consequently, we can view the circle of 

beads as having a circumference equal to one. Harik defines a k-order building block 

as having k points on this circle, and he labels the successive distances between these 

k-points as y-\ through yn. Therefore, a building block is preserved under two-point 

crossover precisely when the injected genetic material falls within one of these gaps 

[17]. He suggests an equation to calculate his new building block linkage as "the 

probability of both crossover points falling within the same gap equals the sum of the 

squares of the gap lengths [17]." (See Equation 19) 

Equation 19 : LLGA Building Block Linkage 

Figure 19 graphically shows how Harik interprets building block linkage [46]. 
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Figure 19: Harik's Linkage Definition 

3.6.1  LLGA Chromosome Representation 

In Harik's version of the chromosome, each gene has a value and a position 

(allele/locus pair), but the chromosome is not allowed to demonstrate under- 

specification as in the mGA. Over-specification, on the other hand, is always present. 

Each chromosome is completely over-specified42. The allele chosen for expression is 

based upon positional precedence. In the original usage, the "positional precedence" 

operator (refer to Goldberg's mGA) was defined as meaning that a "complete" 

chromosome is constructed by a simple left-to-right scan of the linear chromosome and 

the first allele value for a particular loci encountered is expressed during the fitness 

evaluation. (See Figure 15.) 

In contrast, Harik's views the chromosome as a circular list of genes. (See 

Figure 20.) Somewhere along this circular list is an interpretation point. The 

interpretation point serves as the starting location from which the fitness evaluation 

function begins to interpret the genes of the chromosome in a clockwise manner 

recording the first occurrence of each gene as the expressed characteristic. Starting 

from the interpretation point, Harik's version of positional precedence operator functions 

exactly the same as Goldberg's originally envisioned positional precedence operator. 

The difference is that the location of an individual's interpretation point changes during 

the LLGA's processing in order to allow for other allelic expressions. In this manner of 

42 Harik's work assumes a binary encoding allelic alphabet, but if we allowed for some 
other alphabet, we are required to represent each allele value in the chromosome for 
each locus 
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encoding and interpretation, diversity is never lost because the chromosome contains 

every allelic value. 

Furthermore, within the chromosome, Harik includes non-coding material called 

introns. The introns give no contribution towards the fitness of an individual and are not 

included in the chromosome's expression, but serve to facilitate the propagation of 

building blocks and the formation of linkage43. 

Interpretation Point 

Positional 
Precedence 

(1.1)      (2,1 

Chromosome Used in 
Fitness Evaluation 

Chromosome Used in 
Fitness Evaluation 

Figure 20: Visualization of a Chromosome 

3.5.2 LLGA Algorithmic Phases 

The LLGA executes in a similar fashion as the SGA44. Specifically, the 

population is initialized, and then selection and crossover are applied generation after 

generation until some stopping condition is met. Any form of selection may be 

employed, but tournament selection with its low rate of convergence due to its minimal 

selective pressure allows the LLGA more "time" to explore/uncover linkages [7]. Harik 

coins a new crossover operator for the LLGA, which he calls the exchange operator [7, 

8]. This operator requires two chromosomes selected from the population for 

reproduction. One of the chromosomes is designated the donor and the other the 

recipient. The operator selects a random segment of genetic material from the donor 

and grafts it into the recipient at a random location. Since both chromosomes are 

assumed to have an implicit orientation, the grafted alleles/loci are in the same 

44 
The function and number of introns necessary is discussed in Appendix E.4b 
Additional discussion of the LLGA begins in Appendix E.4 
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orientation as they were before this procedure. Now, the recipient is considered 

"overfull" because it has duplicate copies of various allele/locus pairs. 

The duplicate introns/exons pairs are deleted according to the following protocol. 

First, the interpretation point is transferred to the location of the first gene grafted into 

the recipient. Then, starting at the new interpretation point and going in a clockwise 

manner the genes are recorded. When a duplicate gene is found before completing the 

circle, it is deleted. In this manner, the genes transferred from the donor remain intact in 

the recipient45. 

The genes in the recipient are brought closer together by two subtle mechanisms 

operating within the exchange operator. First, the genes that survived crossover in the 

recipient are brought closer together by the deletion process. Duplicate introns and 

exons are pruned from the original chromosome. This results in those remaining genes 

having a smaller/tighter defining length (see Figure 21) as defined by Whitley and a 

lower building block linkage probability as defined by Harik (e.g., classical 5 -> 3, new 2 

-> Ofrom Figure 21). 
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Figure 21: Deletion Process Tightening of Building Blocks 

The second mechanism radically changes the defining length of a "good" 

building block using either definition. For instance, suppose we have the following 

building block comprised of (1,1), (2,0), and (4,1) with a building block linkage of 

(classical = 12) and (new = 10). Prior to crossover the chromosome resembles Figure 

22 Step 1. During crossover, the donor injects the following genetic material {(9,0), 

(1,0), (5,0), (4,1)} in front of the first element of the building block in question, and this 

new material contains an element of the building block {gene (4,1)} (Figure 22 Step 2). 

45 Appendix E.4a contains a figure which provides a complete overview of this discussion. 
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Therefore, the build block.s defining length is shortened/tightened: classical = 3 and new 

= 0. (See Figure 22 Step 3.) 

Interpellation 
Point 

Step 1 

Classical BB Length = 12 
Harik BB Length = 10 

Step 2 
Grafting Point 

/'     V  - 
( {5.01 ) 

(fi.oi ) 

iJBsiir 
To 

c 
Material for 

Transfer 

Recepie 

Step 3 
Crossover Operations 

New Interpertation 
Point 

xjSi Chromosome 
/'' /. Gene Total = 24 
I (9,0) ) Exons = 8 

Classical BB Length = 3 
Harik BB Length = 0 

Figure 22: Crossover Operation Tightening of Building Blocks 

Finally, the exchange operation is directional in that it has different effects on the 

donor and recipient chromosomes [7]. Harik suggests that this asymmetry can be 

remedied by having both individuals selected from the population play alternating roles 

and produce two offspring. 
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A high-level example of an LLGA algorithm is provided in the following figure: 

Program LLGA 

^B^^Ä^^^^^^H^^^^^^B 
Initialization 
Fitness Kvnlualion 

HPHIIHHHHHIBH 
|||i|M|||||||||^|||||||^|||||H^|ll^||||HHli^il 

Tournament Selection /* selection */ 
Exchange Operation /* crossover */ 
Fitness Evaluation 

} Until (stopping condition is not reached) 

^^^^^^^^^B^^^^^^^^fc 
Algorithm 4: LLGA Pseudo-Code 

3.7 Comparison 

In this section, we compare the LIGAs based on initial population explosion 

problem, algorithmic complexity, and the order of linkage to which the algorithm could 

be successfully applied. This serves as the basis towards justifying why we did not 

implement three of the four LIGAs discussed. Furthermore, I point out some "pitfalls" of 

the algorithms that must be considered before they are applied to a real-world problem. 

3.7.1 Initial Population Explosion Problem 

We have defined the dramatic rate at which the initial population of any of these 

LIGAs increases as the "initial population explosion problem." The initial population 

explosion problem affects the usefulness of the LIGA family in two aspects. The first 

aspect is its sheer size and the subsequent affect on the memory. For example, in 

order to investigate a 3rd-order linkage problem involving a 240 bit binary-chromosome 

ignoring chromosome representation overhead (i.e. the overhead of record structures, 

arrays, link list, etc.): 

• The mGA requires 18,202,240 members in the initial population each, 240 bits long 
(see Equation 41). Since each gene is actually an allele/locus pair and the allele can 
be represented in 1 bit and the locus in 8, each gene requires 9 bits of storage 
space. Therefore, the population requires 39,316,838,400 bits (approximately 4.5 
GBytes) of storage space during PEL 

• The SG algorithm only requires the number of allele values multiplied by the number 
of loci possible. For our example, the initial gene pool would have 480 genes (240 
loci X 2 allele values). Each gene would be represented by 9 bits, assuming 1 bit for 
the allele and 8 bits for the locus, for a total of 4,320 bits. 

• Equation 18 implies that GEMGA requires the initial population to be 8 times the 
variation in fitness. If the variation of fitness amongst the initial population was 60, 
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then the initial population size would require 480 members.   Each member has 240 
genes requiring 9 bits for the allele/locus and 8 bits to represent the capacity for a 
total of 1,958,400 bits (1.96 Mbits). This figure does not include the number of bits 
required to represent the linkage set for each chromosome since it is dynamically 
growing. 

• The LLGA needs an exponentially large number of introns coded into each 
chromosome as well as all allele complements for each locus to be present. Based 
on Equation 43 and Figure 76, we would need 4,560 introns and 480 exons in each 
chromosome. Since the LLGA makes no assumptions about the number of 
individuals required within the initial population, we have assumed 100 member 
based upon Harik's examples [7, 8,17]. Including the introns, the space required is 
9 bits per gene (same locus/allele representation) for 4,640 genes times 100 
members which equals 4,176,000 bits (4.2 Mbits). 

Even without the overhead of each particular LIGA's chromosome representation 

structure, the amount of memory required to contain the initial population is a severe 

requirement on the amount of available core memory. By accessing main memory to 

access the initial population, the processor's instruction execution rate is slowed down 

by disk access dramatically increasing the execution time of the algorithm! 

The second aspect of the initial population explosion problem is the time spent 

conducting the initial fitness function evaluations. In this case, the fitness function takes 

1.0911946 seconds to complete. Therefore: 

• Since the mGA requires a fitness evaluation for each member of its initial population: 
18,202,240 members X 1.09119 seconds = 19,862,102.27 seconds or 5,517.25 
hours (229 days). 

• Since the SG algorithm does not require an initial fitness for the gene pool because 
of the way it models the population, this aspect of the problem does not affect it. 

• The GEMGA requires an initial fitness evaluation and creation of the linkages before 
it enters the main selection/reproduction phase of the algorithm: (480 members X 
1.09119 seconds) + (480 members X 240 bits X 1.09119 seconds) = 126,229 
seconds or 35.1 hours. 

• Since the LLGA requires a fitness evaluation for each member of its population: 100 
members X 1.09119 seconds = 109.119 seconds or 0.3 hours. 

The advantage of not implicitly representing the population helps the SG GA to begin 

manipulating its "population" long before the other LIGAs have entered their main 

selection/reproduction phases. 

One important consideration must be pointed out about the mGA. Whereas 

each of the other GAs requiring initial fitness evaluations use completely specified 

chromosomes, the mGA can have under/over-specified chromosomes. The over- 

461.09119 represents the average time spent conducting a CHARMm evaluation using 35,100 
trials. 

53 



specified chromosomes create no problems, but the under-specified ones need the 

competitive template in order for their fitness to be computed. The template has the 

effect of driving the under-specified chromosomes towards the phenotype represented 

by the template. If the global optimum is unknown and, therefore, not used in the 

construction of the template, then the template may drive the mGA population toward a 

suboptimal area of the search space. Therefore, we suggest that a random template be 

created each time an under-specified chromosome needs evaluation. By following this 

method, we would still reward the under-specified chromosome whose fitness is 

improved by the template and there won't be the tendency to drive the mGA's population 

toward any "predetermined" template/search space location. On the other hand, 

creating a "new" template for each under-specified chromosome incurs substantial 

overhead in large populations. 

3.7.2 Algorithmic Complexity 

The complexity of the GA is usually much less than the complexity of the fitness 

function in "real-world" applications. It is the fitness function's algorithm that typically 

drives the overall complexity of a GA once it is applied to a particular application. By 

comparing the complexity of the LIGA family of GAs, we can estimate a lower 

algorithmic complexity bound. If we combine this lower bound with the fitness function's 

algorithmic complexity, then we have a good range on the order of processing time we 

can expect from the GA. (i.e., The area between upper and lower bounds of a Big 0 

complexity curve completely bound the expected runtime of the algorithm.) 

Table 8 illustrates the complexity for each of the LIGAs covered in this paper. 
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Algorithm           Authors      Complexity                     Key 
Messy GA Goldberg G(lk) Where 1 is the number of loci and k 

is the size of the building block [2] 
Selfish Gene Corno 0(1 x cardinality(A)) Where 1 is number of loci and A is 

the alphabet [4]. 
Linkage 
Learning GA 

Harik 0(1 x sqrt(l) x ln(l)) Where 1 is the length of the 
chromosome [17]. 
Where I is number of loci, A is the 
alphabet, and k is the size of the 
building block [10] 

Gene                 ! Kargupta 
Expression GA   i 

! 

G(l x cardinality(A)k) 

Table 8: Algorithmic Complexity 

When plotted (see Figure 23), the mGA's complexity starts higher and grows at 

the worst rate. On the other end of the scale, the SG GA and GEMGA algorithms' 

complexity curves barely grow verses increasingly larger chromosome length. The 

LLGA is in the top half of the graph, and its growth rate is worse than either the SG GA 

or GEMGA. 

It is important to note that the SG GA does not explicitly take into account the 

order of linkage we are trying to investigate. Instead, the SG GA iteratively evaluates 

the genes in the virtual gene pool uncovering higher order linkages in descending order 

of importance. This constraint hampers our ability to execute the SG GA for some fixed 

number of generations because there is no way to stipulate when the SG GA has 

uncovered the degree of linkage within the particular problem. 
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47 Figure 23: LIGA Complexity Curves 

3.7.3 Linkage Order Ability 

Finally, if we look at the order of linkage this family of GAs can investigate, we 

find that it is based upon the other two factors we have discussed: the initial population 

explosion and algorithmic complexity. For the mGA and GEMGA, the initial population 

fitness function evaluation process is the driving limitation. Neither of these two LIGAs 

are efficient for investigating 3rd-order linkages or higher because of the initial population 

fitness function evaluation execution time, 229 and =1.5 days respectively for the 

examples in the previous section. 

The linkage uncovered by the SG GA is strongly dependent on the number of 

generations spent in replication and the size of epsilon chosen to reduce/increase the 

' The y-axis is logarithmic, I is the string length, k equals 3, and A is a binary alphabet. 
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allele frequency. The epsilon value drives the convergence of this algorithm, and Corno 

et a/only suggestion for choosing a good epsilon48 is experimentation [4, 5]. Therefore, 

we must continually execute the SG GA with smaller and smaller epsilons until the GA 

consistently finds the linkage we desire using a predetermined number of generations. 

If the number of generations changes, there is no guarantee the "good" epsilon value 

continues to perform as anticipated. Finally, although the time spent in initially 

evaluating the fitness of the initial population in the LLGA is a small deterrent for its use, 

the real hindrance is the vast number of introns requiring encoding within the 

chromosome. Harik has suggested compression methods for reducing the memory 

requirements of the LLGA chromosome, but for "interesting" problems this compression 

many not save enough memory to be fruitful (remember the example required 4,560 

introns). 

It is important to note that the success of GEMGA is based on two 

considerations that have so far not fit in this discussion. The first is the c-value. The c- 

value represents the variation of fitness amongst the individuals of the population, but 

our general impression is that the c-value is problem-domain-based, and therefore 

search-space-based. Since the initial population is randomly picked from the search 

space, the c-value is unknown prior to the complete initialization of the population, but 

the "c" value impacts the size of the population we need to combat a particular order-k 

deception (see Figure 74). This leads us into a "which came first the chicken or the 

egcf situation. We can increase the size of the initial population in order to decrease 

"c," but when we do this, the variance amongst the population's fitness decreases and 

requirement for increasing population size disappears. But, by decreasing the variance 

amongst the initial population, we are restricting the subspace GEMGA searches. 

Furthermore, when a population is comprised of nearly identical individuals, any GA 

quickly converges to the "optimal" value represented within the bound search area. This 

leads to preconvergence. The "c" value also impacts the amount of time the algorithm 

remains in the Transcription phase because there are more members of the population 

to evaluate. The other algorithmic consideration is that GEMGA only calculates the 

linkage sets once. Most of the interesting real-world problems do not conform to this 

static linkage concept, but they demonstrate dynamic linkage characteristics. (I.e., 

dynamic linkages change/mutate over the evolutionary process.) For instance, there 

48 epsilon is problem-domain-dependent 
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may be a 3rd-order linkage within a chromosome through out the evolutionary process of 

an organism, but as successive generations are evolved and die-off, this 3rd-order 

linkage may involve different genes. 

3.7 Summary 

All LIGAs are plagued by three problems: initial population explosion, algorithmic 

complexity, and low k-order of linkage investigation ability. How we incorporate problem 

domain knowledge into our LIGA greatly impacts the success of any search 

investigation. Any genetic algorithm that ignores the linkages between genes also 

ignores the evolutionary processes conceptualized in field of genetic algorithms. Only 

by modeling as many of the possible evolutionary processes as possible within our GA 

family of algorithms are we able to solve complex and interesting real-world problems. 

But, as this chapter has pointed out, the more we try to model, the more complex the 

process becomes. Currently, our best hope for solving interesting problems may lie with 

the LLGA or the SG GA with their small initial population and algorithmic complexity. 

Table 9 summarizes the characteristics of each algorithm discussed. 

Algorithm Chromosome Mutation Crossover Selection 
mGA Variable length Random mutations 

allowed 
One-point Traditionally, 

tournament 
selection. 

SGGA None None None Random 
construction of 
binary 
tournament 
between 
individuals 
drawn randomly 
from the virtual 
gene pool 

GEMGA Fully-specified and 
dynamically growing 

None Bit masking based 
upon the dominate 
donor 

Random. 

LLGA Over-specified and 
includes introns 

Implicit by re- 
orienting the 

Two-point Traditionally, 
tournament 

interpretation point selection. 

Table 9: Algorithm Characterisitcs Summerized 

Table 10 indicates some problem domains that these algorithms have been 

successfully applied towards (* indicates NP-complete problem). Chapter 4 discusses 

our integration of the LLGA with the Protein Structure Prediction (PSP) problem domain. 
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We decided not to integrate the SG GA with the PSP problem because of the inability to 

determine the order of linkage the algorithm will/did uncover and the required tuning of 

the epsilon value. 

Problem Domain MGA          SG GA         GEMGA LLGA 
0/1 Knapsack Problem* X 
0/1 Multiple Knapsack Problem* X 
The Sphere Model X 
Griewank's Function X 
Shekel's Foxholes X 
Michalewicz's Function X 
Langerman's Function X 
Order-X Trap Function X 

(order 3) 
X 

(order 5) 
X 

(order 4) 
One-Max Problem X X 
Muhlenbein Function X 
Rosenbrock's Saddle X 
Traveling Salesman Problem X 
PSP/PFP X X 

Table 10: Successful LIGA Aplications 
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4.0 Genetic Algorithm (GA) Design and Implementation 

4.1 Introduction 

Previous research at AFIT resulted in a number of parallel and serial genetic 

algorithm implementations and evaluation functions for several domains [14,15,18, 37, 

52, 66, 73]. Collectively, these are known as the AFIT Genetic Computation Toolkit 

(AGCT). The current state of the AGCT toolkit is in Figure 24. The contributions of this 

research to the toolkit are marked by (Deerman). 

The purpose of this chapter is document the design decisions, implementation 

details, and interface requirements of the LLGA/CHARMm integration. A recurring 

situation throughout this research has been the restricted amount of prior design and 

implementation documentation details. Therefore, we have taken it upon ourselves to 

explain the in's and out's of the CHARMm energy model as implemented by AFIT, the 

redesign/integration of the LLGA to incorporate the PSP problem, and the integration of 

AFIT's CHARMm code with Ramachandran constraints as developed in Chapter 2. Our 

intent is to provide complete documentation relating to the design and implementation. 

Section 4.2 documents the CHARMm energy model implementation developed by 

Brinkman [18] and refined by Gates [15]. Section 4.3 rationalizes our redesign, 

implementation, and integration of the LLGA, and finally, Section 4.4 provides our 

Ramachandran constrained CHARMm energy model. Where appropriate, design 

alternatives are indicated. 
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Figure 24: AGCT Genetic Algorithm Toolkit 

4.2 CHARMm Implementation Design 

The CHARMm code developed at AFIT follows the Structured Analysis and 

Design paradigm of software development [70]. This paradigm takes a top-down 

approach for partitioning the "problem" into subproblems which can be easily mapped to 
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specific implementable modules. Discussed separately in this section is the how to's of 

integration and the rough control flowlor the implemented energy model. 

4.2.1 Integrating CHARMm 

In order to invoke the CHARMm energy model correctly, the GA initially calls 

molecule(int length) within molecule.c. The parameter "length" represents the number of 

characters that comprises the chromosome. From this module, the parameter file, the 

z-matrix file, and the RTF file are read and the CHARMm model is initialized. Once 

initialized, the GA calls charmm_eval(string chromosome, int length) which returns the 

calculated energy for the particular chromosome as a "C" double. charmm_eval is 

located in energy.c. 

Another interface to AFIT's model is domain_output(.rtriwg chromosome, int length) 

located in charmm.sga.out.c. This module calculates the energy just as charmm_eval; 

furthermore it produces an output file call eval.bst which contains a term-by-term 

breakdown of the energy calculation and the value of each independent dihedral angle. 

This module is employed for displaying the energy terms and angles for a single 

chromosome/protein. 

4.2.2 Design Implementation 

As presented in Error! Reference source not found., when a call to charmm_eval 

commences, the chromosome is initially decoded from its binary representation to its 

dihedral angles. Each dihedral angle is assumed to represent a particular radian value 

within the molecule, and each angle is specified by 10 binary digits allowing for the 

encoding of 1,024 different radian values per dihedral angle. For example, [Met]- 

Enkephalin is represented by the amino acids Tyrosine-Glycine-Glycine-Phenylalanine- 

Methionine, and it has 24 dihedral angles. Between each amino acid there are three or 

more dihedral angles depending on whether a side chain corresponds to the particular 
■  .49 ammo acid . 

49 The tyrosine has 3 side chains, phenylalanine has 2 side chains, and methionine has 4 side 
chains. See FIGURE 
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charmm_eval 
{energy.c} 

Decoding  GA chromosome 
into 

dihedral angles 
Binary => Integers 

Lamarckian 
Replacement 

charmm_eval 
{energy.c} 

Figure 25: CHARMm Source Code Control Flow 

Thus, the GA chromosome is 240 binary values (i.e., 24 ten bit binary numbers). The 

GA chromosome represents these dihedral angles in accordance with the z-matrix input 

file. The z-matrix file is a sequential listing of all atoms present in the molecule. See 

Figure 26. 

atom bond length flag bond angle flag dihedral usage flag atomy atomk atomi charge 

Figure 26: Z-matrix Format 

The atom field represents the atom in the protein from which the bond length, 

bond angle, and dihedral fields are calculated. Therefore, the bond length is the 

distance between atom and atorrij. The bond angle is a radian measurement of the 

angle formed by the atom, atorrij, and atomk. The dihedral is the torsion angle in radians 

of the middle bond formed by the atom, atorrij, atomk, and atorri|. But the key to the z- 

matrix file is the usage flag. This flag specifies whether dihedral angle is dependent 

and independent. If the usage flag is set to 1, the angle formed by atom, atom,, atomk, 

and atomi represent an independent dihedral angle that is the principle dihedral angle 
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used in the AFIT CHARMm energy calculations. If the usage flag is set to 2, indicating 

a dependent dihedral angle, or 0, indicating that this dihedral is not used in the energy 

calculation, then it is not represented within the GA chromosome. 

Figure 32 is a representation of [Met]-Enkephalin corresponding to the z-matrix 

filed named nayeem.z. This z-matrix file is in the "correct" configuration for the AFIT 

CHARMm energy model. The atoms as numbered in Figure 32 correspond to the 

"atom's", atomj, atomk, and atomi in nayeem.z. If this z-matrix file is used with the 

corresponding parameter file (PARM.PRM) and topology file (NAYEEM.RTF) located in 

-genetic/inputfiles, then the associated input energy calculated by AFIT's model matches 

Table 11. The dihedral angles for the [Met]-Enkephalin molecule depicted in Figure 32 

that energies are given by Table 11 are in Table 14. 

TERM ENERGY 
Fixed bond energy 12.380356 
Dependent bond energy 0.000000 
Independent bond energy 0.000000 
BOND ENERGY 12.380356 
Fixed angle energy 6.189469 
Dependent angle energy 0.000000 
Independent angle energy 0.000000 
ANGLE ENERGY 6.189469 
Fixed dihedral energy 0.000160 

5.415865 Dependent dihedral energy 
Independent dihedral energy 2.787972 
DIHEDRAL ENERGY 8.203997 
Lennard-Jones energy -18.802334 
1-4 L-J interaction energy 3.163984 
LENNARD-JONES ENERGY -15.6383349 
Electrostatic energy -88.855370 
1-4 electrostatic energy 48.752795 
ELECTROSTATIC ENERGY -40.102574 
NON-BONDED ENERGY -55.740923 
TOTAL ENERGY -28.967101 

Table 11: Correct Energy Values Associated with the Correct Z-Matrix File 

The translation between the z-matrix file layout to the GA chromosome is 

esoteric and solely dependent upon the ordering of the principle/independent dihedral 

angles as defined by the z-matrix file. Table 12 depicts z-matrix to GA chromosome 

corresponds to the nayeem.z file layout. 
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Next, the decoded chromosome is either locally optimized or its energy value is 

just calculated. The constant, Minimization, determines which path to traverse. The 

lower its value the less likely the evaluation performs local optimization. Local 

optimization takes the form of either a Baldwinian (Davis replacement50) or Lamarckian 

approach. In the Lamarckian method, the chromosome and its fitness value is replaced 

by the best locally optimized chromosome. The Baldwinian approach, on the other 

hand, just replaces the fitness value of the passed chromosome with the fitness of the 

best locally optimized chromosome. Each of these techniques requires at least three 

executions of the CHARMm energy model. 

Appendix G contains data flow diagrams for the complete CHARMm energy 

model. These diagrams document the design of the model as developed by Brinkman 

[18] and Gates [15]. 

4.3 LLGA/PSP Design and Implementation Details 

The LLGA is developed following an object-oriented methodology. The object- 

oriented approach to software engineering is based upon the modeling of objects from 

the "real world" and then using the model to build a language-dependent design 

organized around those objects [71]. Object-oriented practitioners argue that the 

paradigm promotes better understanding of requirements, cleaner design, and a more 

maintainable system [71]. Consequently, it was our goal not to re-engineer the given 

class interfaces or overall object design. 

A few additions to the overall design were required to integrate Harik's 

implementation with our problem domain. Figure 27 shows the complete LLGA class 

hierarchy51. The classes "Bbtemplate," "Worst," and "timing" were added. In total, five 

major challenges needed to be meet in order to integrate the LLGA with the PSP 

problem domain. Each challenge is discussed separately. 

50 In the code, it is called Davis Replacement not Baldwinian. Therefore, we choose consistency 
with the code over exactness. 
51 Appendix H contains the Rumbaugh diagrams for each object. 
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Figure 27: LLGA Class Hierarchy 

4.3.1  Challenge 1: Building Block Assumption 

In Harik's original LLGA implementation, he assumed that the perfect building 

block (BB) contains all "1's" in each allele. This is an unreasonable assumption for any 

real problem. In particular, a [Met]-Enkephalin chromosome constructed from just 1's 

represents a fitness of 12.980 kilocalories which is far above the the QUANTA™ 

minimum of -29.225 kilocalories [15]. We conjecture that Harik made this assumption 

because he used the Max-Ones problem in order to show the power of the LLGA in his 

dissertation [17]. The Max-Ones problem is a deceptive problem in which the fitness a 

certain local maximum (represented by all 0's) approaches that of the global maximum 

(represented by all 1's) [17]. Therefore, by "hard coding" his algorithm, he could drive 

his solution to the global maximum! 

To correct this situation and to generalize the algorithm, we included a new 

attribute of a population called a BBtemplate (i.e. building block template). The 

BBtemplate is loaded from a file during the creation of the population. On the other 
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hand, the BB template is never used to control the direction of search in either the 

original LLGA or our modified version. The BB template's only function is as a 

comparison tool used during reporting! Each chromosome in the population is 

compared to the BB template to determine the number of BBs contained within the 

population. If the global minimum/maximum is known, then the BB template can serve 

as a compass indicating how close the GA is to the global minimum/maximum. 

Otherwise, any string of 1's and O's can represent the BB. 

Two other alternatives were evaluated before implementing the alternative 

discussed above. The first alternative used a randomly generated chromosome as the 

BB under the assumption that since for most real world problems we do not know the 

optimal solution, a random guess at the BB distribution was as good as any. This is the 

simplest solution, and probably the less likely to produce a "good" solution because 

hopefully there is some educated guess from the problem domain which we could 

incorporate into our approach. The next alternative we investigated involves a dynamic 

BB that would start as a randomly generated BB. Then, as better solutions are 

encountered, the BB template is updated to reflect the changing landscape. We 

conjectured that this solution would be optimal in the situation that the BB within the 

chromosome changed without increasing in number. For instance, it is conjectured that 

the PSP problem relies upon 5 BB [15]. We also anticipate that as the protein folds too 

more and more compact states, the dihedral angles included within the BB changes. 

On the other hand, if we are constantly changing the BB template to match the optimal 

individual, we may be driving the LLGA to a local minimum. Consequently, we chose 

not to implement this method. 

4.3.2 Challenge 2: Recording the Optimal Solution Uncovered 

The original LLGA contained no process by which to record and report the 

optimal individual found. It is possible for a GA to find the global optimum answer during 

initialization, and then breed this chromosome out of the population during future 

generations due to the destructive effects of crossover and mutation. Therefore, we 

added a new attribute to the population called "worst52" that records the worst 

chromosome found across generations. When our LLGA is initialized, we randomly 

choose the worst chromosome from the problem space. Then, at the end of each 

generation, we compare the worst chromosome to each member of the population. If a 
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population member has a fitness value worse then the previous worst chromosome, it 

replaces the previous worst in the next generation. Once the GA has terminated, the 

worst ever chromosome is reported with its fitness value. 

4.3.3 Challenge 3: Integration of CHARMm 

The integration of the CHARMm energy model into the LLGA was nearly trivial. 

Harik's class decomposition allows for the inclusion of additional fitness functions in the 

Objunc class. Basically, the objfuncQ needed to be changed to point to a new function 

called CHARMM_EVAL(). Furthermore, the reporting functions in llgajo.cpp needed to 

be updated to include the new fitness function name. Since we made the decision not 

to completely re-engineer Harik's interface methodology, CHARMM_EVAL() parameter 

list contains three dummy variables which was necessary for the llgajo reporting 

function's look-up table to recognize the new signature53. 

4.3.4 Challenge 4: Parallel Implementation and Execution Timing 

It is one of the goals of this research to parallelize the LLGA and report on the 

efficiency of the implementation. For parallelization, we used the message-passing 

interface (MPI) standard to implement a master-slave-farming model54. It is the master's 

responsibility to conduct the "normal" GA operations of reproduction and selection. The 

master also controls the distribution of the fitness evaluations to each of the slaves. In 

this model, the master usually remains idle while the slaves do their work. This leads to 

an unbalanced distribution of the work per unit time which is undesirable because it 

leads to under utilization of the processors. To curb this situation, the master also has 

the responsibility of evaluating the "worst" chromosome during the initial generation. 

There after, the fitness of the worst chromosome is copied during the recording of the 

"new" worst. 

The partitioning of the data is accomplished using three messages per 

generation per processor. The first message from the master to the slave indicates that 

slave is about to be put to work. The second message transmits the chromosomes the 

slave needs to evaluate and the last message returns the evaluated chromosomes back 

to the master. The major challenge in implementing this scheme was the construction 

52 We choose to call the attribute "worst" because intuitively the minimum value is the worst. 
53 All fitness function signatures needed to be consistent. 
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of the message. MPI does not intrinsically handle the transmission of C++ objects nor 

does it handle composite data structures. In order to transmit a C++ object, we built an 

MPI derived message type based upon the decoded chromosome object's atomic C++ 

data structures [72, 84]. The end result is less communication overhead, which 

decreases the parallel LLGA's (pLLGA) execution time. The decrease of 

communication results from not transmitting the chromosome string and its associated 

fitness field as separate messages. 

A finally note concerning the parallelization of the LLGA must be discussed. The 

pLLGA requires an odd number of processors, and the number of slaves must evenly 

divide the members of the population without a remainder. We placed this last 

restriction upon the pLLGA in order to simplify the algorithm's implementation. Without 

this restriction the master processor would have to unevenly distribute the workload. 

This in turn would cause load-in-balance for the homogenous parallel platform, and the 

need to investigate and implement an appropriate load-balancing scheme for the 

heterogeneous AFIT Beowulf. 

The efficiency of the LLGA has never been reported in terms of minutes/hours. 

We chose to implement a separate class devoted to the capture and reporting of 

execution times for the LLGA. Two aspects of the LLGA are report. The first is the total 

time the LLGA is executed. Secondly, the total time spent accomplishing fitness 

evaluations, the average per fitness evaluation, and the number of fitness evaluations is 

also reported. This information indicates how much time the pLLGA spent conducting 

parallel operations. An alternative approach would be to use global variable to capture 

the timing, but global variable are NOT an appropriate programming construct under any 

circumstances. 

4.3.4 Challenge 5: Random Number Generator Correctness 

The stochastic nature of a GA is totally dependent upon the implemented 

random number generator. Dymek's Appendix A [66] covers the importance of random 

number generators due to this heavy reliance. The random number seed dictates 

where in the problem's search space the GA begins searching. Therefore, it is 

extremely important that "good" random number generators are used. A good random 

number generator is defined as one in which no "perfect correlation" occurs [66]; a 

54 Models of parallelization are discussed in APPENDIX D. The LLGA follows the data 
decomposition model. 
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perfect correlation between two random number generators results in the same 

instantiated behavior from two separate GA executions. At first glance, this sounds 

much worse than the situation warrants. For the purposes of validation of experiments, 

two separate GA test runs, which start with the same random number seed, should 

result in precisely the same GA behavior. 

On the other hand, random number generators are only pseudo-random. The 

randomness of the sequence of generated "random" numbers depends on the seed. It 

is possible that two distinct seeds used to initialize a random number generator can 

result in the same or over lapping sequence of random numbers. This results in two 

separate GA executions having similar behavior, even though different random seeds 

are used. This is not desired here. Thus, the random number generator needs to be 

check to ensure: 1) that the random numbers produced represent a uniformly 

distributed set of numbers between the lower and upper bound, 2) that the different 

seeds used in testing do not correlate, and 3) that within a series of random numbers 

there is no correlation indicating a relationship between the current random number and 

a previously generated random number. Uniform distribution guarantees that the 

random numbers generated have an equal chance of occurrence, as those that are not 

generated. If two separate random seeds produce correlating sequences of random 

numbers, two separate executions of the GA using these seeds would search the same 

problem domain landscape. Finally, we do not want a correlation within a sequence of 

random numbers because then our random sequence becomes predictable. 

Figure 28 shows the results of evaluating the distribution of Harik's random 

number generator using the first seed in Table 17. 
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Figure 28: Uniformly Distributed Random Numbers 

Figure 28 represents a uniform distribution because if it were not the graph 

would have a stepping characteristic which would indicate that a particular random 

number was generated two our more times. Figure 28 was generated using the 

random numbers manufactured during the creation of the chromosomes and the 

determination whether or not to perform crossover. 

Secondly, in order to determine if any two series of random sequences using 

unique seeds result in a correlation as series of pairwise correlations were calculated 

and tabulated along with their associated p-value. Table 13 indicates the results. Out 

of the twenty different possibilities, there are only two cells that may indicate a possible 

correlation. There maybe a correlation between the sequences of random numbers 

produced by seeds (3 and 5) and (2 and 7). On the other hand, because we are using a 

random number generator, it is possible that two sequences approximate each other 

slightly as in our case (only 1/10th of the total number of comparison possible correlate). 

If Table 13 indicated that there were correlations between more of the sequences (for 
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instance 25% of the cells indicated possible correlations), then we would be concerned 

that the random number generator was not producing random sequences of numbers. 

Sequence 
1 

1 2 3 ^E^| 

«—« 
e                 /              ö 

1 iiBiilBil! — — _ 

-0.00370 
(0.71132) 

1 —• I^IIBIlsIll lillllllilpllil — — 

0.00670 
(0.50281) 

-0.00593 
(0.55314) 

1 ■|||(||illl|i ||Bj|||i^||||| |||||ISlll|||l« ...... — 

0.00599 
(0.54934) 

0.00544 
(0.58679) 

-0.00342 
(0.73217) 

1 — IHIPIslHHI — — 

0.00428 
(0.66843) 

0.00493 
(0.62227) 

0.02151 
(0 0315)) 

0.01951 
(0.05103) 

1 iiiÄ|||iiimi — — 

-0.00019 
(0.98526) 

-0.00949 
(0.34252) 

0.01094 
(0.27394) 

-0.00873 
(0.38284) 

-0.00137 
(0.89086) 

1 - —- 

0.00504 
(0.61402) 

-0.02191 
(0 02844) 

-0.00107 
(0.91431) 

-0.00150 
(0.88097) 

0.00695 
(0.48706) 

-0.01192 
(0.23329) 

1 -— 

-0.00410 
(0.68168) 

-0.01333 
(0.18250) 

0.01704 
(0.08841) 

-0.00610 
(0.54175) 

0.00229 
(0.81914) 

0.00905 
(0.36543) 

-0.00016 
(0.98672) 

1 

Table 13: Pairwise Correlation 

Finally, the sequence produced by each unique seed was check to ensure that 

there was no dependence between any generated random number. The following 

graph is one example autocorrelation graph representative of each of the eight 

sequences to a lag of 500 [85]. The "lag" indicates sequential relationship between the 

random numbers compared for the correlation 55 

Autocorrelation 

N^l^lV^^^ |E3S arias   1   | 

Figure 29: Autocorrelation for Random Seed 1 

Figure 29 indicates that there is no correlation between the numbers generated. 

If a correlation were found, it would be represented as a repeating pattern within the 

55 A lag 500 test for a correlation between random numbers generated from the xth number up to its 500th 

neighbor. 

73 



graph. The pattern could be on alternating sides of the x-axis (i.e. like to a 

sine/cosine/tangent wave) or repetitive on one side of the x-axis either above or below. 

None of the random seeds' autocorrelation indicated a correlation. 

Therefore, together these three tests illustrate that the pseudo-random number 

generator developed by Harik behaves in a random fashion. 

4.4 AF1T CHARMm Inclusion of Ramachandran Constraints 

As stated in Section 4.2, when a chromosome is passed to charmm_eval(), it is 

first decoded. This decoding process is highly dependent on the current encoding of the 

chromosome in the GA. This encoding is implicitly defined in Table 12, and it is 

different for different molecules. Therefore, we choose to implement our constraints 

methodology as a conditional compilation scheme by employing the C Mfdef construct. 

The original code is shown in Figure 30 and our modified code is in Figure 31. 

indexPtr = Indep_clihedral; 
while findexPlr != NULL) 

t 
temp = 

slice); 
P[n] = 

HI; 

= (double) Cioi t&buffl 

({temp / maxjrange) * 

start], 

iwoITi- 

||||^^|||^^i|S|||^|||^||i|M|||^l|l|M|||| 
start = start + slice; 
indexPtr = inde\.Pli->ne\t; 

} 

Figure 30: Orginal Chromosome Decoding 

In the previous implementation, each dihedral angle is translated from its 10-bit 

binary encoding to a radian value (a C double) between 0 and 2n. In the new 

constrained CHARMm decoding, the dihedral is decoded and then mapped to the 

appropriate constrained subrange of possible values depending on which dihedral it 

represents. 
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indcxPtr = Inck*p_dihodral; 
while (indcxPir != NULL) 

temp = (double) Ctoi (&buiT| start |, slice); 
temp = ((temp / max_rango * twoPT) - PI; 
#i f'dcf Met-Enkaphiilin 

/* non-glycinc phi */ 
case 1: ca*.e 10: case J3: 

leinp = tirmp+(f-210 - -30)/twoPI) + -210; 

/* glycine phi "7 
case 4: case 7: 

temp = lcmp*i(-315 - -45)/iu,oPI) + -315: 

IlllB^ 
case 2: case 5: case S: ca*.e 11: case 21: 

lemp = icmp*u21() - -9()VtwoPl) + 210; 

/* omega */ 
case 3: case 6: case 9: CUM: 12: ca>«e 24: 

temp = temp*<(-160 - -200)/twoPI) + -160; 

/'" chi 1&3 tyrosine, chi2&3 moth ion ine *7 
case 14: case: 22: case 19: case 20: 

temp = temper-160 - -200VtwoPI) + -160; 

/* chi2 tyrosine, chil pheny, chi 1 mctliioniiu* */', 
case 15: case 16: cu\c 18: 

temp = t<MTip*((75 - 45 j/twoPl) + 75; 

/* chi2 pheny. chi4 methionine */ 
case 17: case 23: 

lemp = tcmp*((-75 - -45)/twoPI) + -75; 

default: printfC'error in n = r/i\",ny. exitO); 

P|n| = lcrnp: 

start = start + slice; 
indcxPtr = indcxPtr->nc\t: ■■■■■■■■I 

Figure 31: Modified Chromosome Decoding 

The switch statement implements the transformations discussed in Chapter 2. 

This transformation process needs to be encoded for each different protein because the 
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chromosomal encoding is different. Newman projections for each constraint helps in 

visualizing the allowable regions for each dihedral angle, reference APPENDIX I. 

4.5 Summary 

Software reuse and portability have continued to be the driving force behind 

AFIT's development of code. The design presented in this chapter has maintained 

these objectives by integrating the object-oriented LLGA code with AFIT's own 

functionally decomposed CHARMm energy model without major modifications to either 

system. Furthermore, our novel incorporation of constraints can be easily disengaged if 

the inclusion of constraints into the energy model prove to be fruitless. The next chapter 

presents the engineering tests used to evaluate our modifications to the CHARMm 

energy model and Harik's algorithmic approach. 
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5.0 Design of Experiments 

In the process of studying the protein structure prediction (PSP) problem, we 

have read many papers touting their experimental prowess, but if the truth were told, 

very few computational researchers conduct objective experiments with the basic 

scientific methodIn mind. A well-developed scientific experiment encompasses the 

following characteristics: a measurable objective/goal (hypothesis), well-defined 

methodology/procedures, validated results, and a logical conclusion(s). Conclusions 

may support or contradict the objective, but either outcome leads to useful information 

being provided. The scientific method consists of four repeated steps: observe, 

hypothesize, predict, and test. For instance, if we want to prove "A" is true, we can 

assume "A0" is true. Observe the nature of A0, and look for evidence that it is actually 

not true. If "strong" evidence exists, we can concluded that A0 is false and A is true. On 

the other hand, if weak or no evidence exist, then we must continue to assume A0 is 

true. But this does not prove A0 is true. We can always restate our hypothesize and re- 

evaluate "A" until what we want to prove is clearly valid or invalid. The scientific method 

combined with objective scientific experimentation results in a sound irrefutable56 

conclusion.   For an in depth look at developing scientific experiments the reader is 

referred to [75]. 

For the purpose of this research, the observed phenomenon is the protein 

structure prediction problem, and the hypothesis is that the parallel Linkage Learning 

Genetic Algorithm (LLGA) family57 can generate an "acceptable58" molecule 

conformation, by employing the CHARMm energy model and local minimization 

techniques as the fitness functions, more efficiently than previously employed AFIT 

methods. 

This chapter discusses how to test the LLGA (with and without domain 

constraints), described in Chapter 3 and developed in Chapter 4. Section 5.1 covers 

the proteins used. Section 5.2 describes the general data requirements and statistical 

tests that are conducted. Finally, Section 5.3 establishes each of the experiments 

performed to test the hypothesis. 

56 Irrefutability implies that your conclusions cannot be proven false. 
57 The LLGA family = LLGA, pLLGA, constrained-LLGA, constrained-pLLGA. 
58 Acceptability is defined here as a GA calculated protein with an RMSD of less than 1. 
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5.1 Test Molecules 

Two separate protein molecules are used for these tests. The first molecule, 

[Met]-Enkephalin, is a very small polypeptide with only five amino-acid groups: Tyr-Gly- 

Gly-Phe-Met59 using neutral NH2 and -COOH as terminators at the cc-amino and oc- 

carboxyl ends, respectively. This protein was chosen because it has a confirmed 

conformation using the QUANTA™ package and was used by relevant research efforts 

[6, 7, 8, 9, 14, 15,18, 37, 52, 66, 73]. The second molecule, Polyalanine57, was chosen 

because of its affinity to nicely fold into a a-helical structure. Polyalanine57, a larger 

polypeptide than [Met]-Enkephalin, is defined by 57 amino-acid groups: Ala-Ala-Ala-...- 

Ala60. We have chosen to use the same end groups as the [Met]-Enkephalin molecule. 

Figure 32 and Figure 33 are representation of [Met]-Enkephalin and Polyalanine57, 

respectively. The figures are labeled to distinguish the dihedral angles along their 

molecular backbone. Table 14 and Table 15 outline the "correct" dihedral angles values 

for the "accepted61" energy minimum defined by QUANTA™. The conformation energy 

for [Met]-Enkephalin is -29.225. Alternative molecules have been considered, (e.g., 

Crambin [79], P27-4 [80], P27-6 [80], P27-7 [80], cellular acid binding protein I [81], 

cucumber stellacyanin [81], endoglucanase [81], histidine-containing phosphocarrier 

protein [81], ubiquitin conjugating enzyme [81], and the Abl-SH3 domain of tyrosine 

kinase protein [62]). These molecules were not used because of their large size and 

because they have no accepted minimum conformation at this time. 

Residue 
Dihedral Angle        (degrees) 

Tyr -86 156 -177 -173 79 166 — 

Gly -154 83 169 — — _ _ 

Gly 84 -74 170 _ —- — ■ 

Phe -137 19 -174 59 -85 — — 

Met -164 160 -180 53 175 -180 -59 

Table 14: Dihedral Angles for [Met]-Enkephalin Accepted Energy Minimum 

59Tyrosine-Glycine-Glycine-Phenylalanine-Methionine 
60 Alanine times 57. 
61 Different molecular energy calculation engines may compute different energy values for the 
same molecule. 
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5.2 General Data Requirements 

Here we examine the general variety of data to be collected during the 

experiments, the random number seeds used to initialize the experiments, and discuss 

the general types of statistical tests that can be performed upon the collected data. 

Experiments are designed either to test effectiveness of a "new" algorithmic approach to 

a problem and/or to test the efficiency the algorithm has towards solving the problem. 

Our experiments examine both effectiveness and efficiency performance of the LLGA 

family. 

5.2.1 General Data Requirements 

Table 16 indicates the general types of data collected for each experiment. If a 

specific experiment requires additional data to be collected, the methodology portion of 

the experiment description identifies the additional requirements. The general types of 

data collected per evaluation include: 

♦ The random number seed used, 
♦ The best individual's fitness value, 
♦ The best individual's chromosome (binary) representation, 
♦ The best individual's coordinates, 
♦ The worst individual's fitness value, 
♦ The average fitness per generation, 
♦ All the chromosomes evaluated and their fitness values, 
♦ Any parameters, 
♦ The overall execution time, 
♦ The CHARMm execution time, 
♦ The average CHARMm execution time, and 
♦ The number of fitness evaluations performed. 
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5.2.2 Random Number Seeds 

The LLGA requires the random seed to be a real number (of finite decimal 

representation) in the interval between 0 to 1. Since the LLGA bounds the random 

seed, we have chosen to use seven uniformly distributed random numbers within this 

range. The random seeds were pulled from [77] and scaled by placement of a decimal 

point prior to the first digit. Table 17 indicates the seeds used for each GA experiment. 

Set LLGA (all variants) 
1 0.014150 
2 0.107629 
$ 0.241816 
4 0.-M5874 
5 0.680467 
6 0.805G48 
7 0.928304 

Table 17: Random Number Seeds Use In Initialization 

5.2.3 Root Mean Squared Deviation (RMSD) 

Root Mean Squared Deviation (RMSD; p=2 norm) is one way of comparing a 

calculated molecule's conformation to the naturally occurring conformation independent 

of the calculated fitness62. For instance, a GA may produce a molecule conformation 

(X), which approximates the accepted energy level of the best known conformation (Y), 

but internal coordinates for each atom within X may not closely correspond to the 

positions within Y. Thus, this analysis compares a GA best produced molecule to the 

naturally occurring molecule. RMSD is used in particular because the PSP community 

commonly references RMSD calculations. Therefore, we can compare our results to 

other research efforts, although, it must be stressed that different energy models may 

provide different energy values for the same molecule even when the internal geometry 

is the same. The general equation for this calculation is: 

ifnumbeirf dihedrabngles 

RMSI*=_ ^(Jiliedrcg R-dihedratU,llaj] 
/=i 

Equation 20: RMSD Calculation 

62   Other norms include: p-norm, maximum distance between points, maximum difference in 
probability, absolute difference, etc.. 
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5.2.4 Test Platforms 

Experiments are executed on the Aeronautical System Center (ASC) Major 

Shared Resource Center (MSRC) IBM SP2; the Air Force Institute of Technology (AFIT) 

network of workstations (NOWs); and on the AFIT ABC Beowulf. After initial testing, it 

was decided not to use the NOW due to its lack of computational power. A single 

execution of the LLGA using all available processors (6) requires 48 hours to 

complete63. Table 18 indicates the number of processors used, the random number 

used, the population size, and the chromosomes per processor. Hardware limitations 

dictate the current upper limit for the AFIT Beowulf system. For a complete description 

of each system see APPENDIX K. 

Number of 
Processors 

Random 
Number 

Population 
Size 

Chromosome 
Per Processors 

IBM SP2 AFIT Beowulf 

1 0.014150 50 50 X X 
2 0.107629 50 50 X X 
3 0.241816 50 25 X X 
5 0.445874 52 13 X X 
9 0.680467 56 7 X X 
11 0.805648 50 5 X X 
17 0.928304 64 4 X 
^3 0.999999 75 I 50 3I2 X 

Table 18: Processor Allocation per Architecture 

5.3 Experiment Specifics 

General parameters for the LLGA are given in the following table' 64. 

63 See Appendix K for a complete description of each platform. 
64 IMPORTANT! See Appendix F for a sample LLGA input file, and the CHARMm energy model 
input files! 
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Parameter                                        Description                                  Impact 
UponGA 

building.._blocks Specifies the number of building blocks. 
[Met]-Enkephalin = 24 
Polyalanine = 228 

NO 

(test function) This field requires 5 entries. 
Building Blocks: 1-building blocks 
Test runction: Cl IARMM. CVAL 
Bits per Building Block: 10 for both molecules 
Signal Ratio: 0.07 
Weighting: 0 

NO 

iPlllllllSllllli 
IllalllllllllllSi 

coding_genes Specifies the number of coding genes. It is the 
same as the chromosome length in the simple 

[Met]-Enkephalin ^ 240 
Polyalanine = 2,280 

NO 

noncoding_genes The number of introns to include based upon 
Equation 43. 
[Met]-Enkephalin = 4,650 crossover disruptive 5% 
Polyalanine = 7,752 crossover disruptive 15% 

YES 

Popsize Size of the population. For the purposes of these 
tests we have fixed the population size to 50 
chromosomes. 

NO 

selection_operator tournament selection between parents and 
children. 

YES 

selection rate The number of chromosomes per tournament. YES 
Pcross Ranges between 0 (never crossover) to 1 (always 

crossover). 
YES 

stop_criteria Number of generation to execute the LLGA. With 
pcross = 1, the number of fitness evaluations per 
generation equals the population size. 

YES 

YES Seed The random number generator seed. 
report population Write output to a file (on = yes, off = no). NO 
report bestjndividual Write output to a file (on = yes, off = no). NO 
Bbtemplatejilename The filename of a file with a single chromosome in 

canonical form. 
NO 

Table 19: General LLGA Parameters 

5.3.1  Experiment 1: Parallel vs. Sequential LLGA 

Objective: The objective of this experiment is twofold. The first objective is to 

validate that results from the sequential LLGA (sLLGA) are equivalent to those obtained 

in the parallel (pLLGA) version. Many man-hours have been spent ensuring the 

behavior of the pLLGA is in accordance with the sLLGA. Furthermore, correctness is an 

issue because there is greater difficulty in verifying correctness of parallel algorithms 
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than sequential algorithms [36, 37]. Secondly, we wish to characterize the efficiency of 

the pLLGA in terms of overhead, speed-up, and scalability. 

Methodology. Harik's serial implementation [17] which we modified to 

incorporate the CHARMm energy model is used for the sLLGA. 

A data parallelized implementation based upon the sequential LLGA is employed 

for the multi-node experiments. Chapter 4 presents low-level design and 

implementation details. Comparison between the single node and the 2 node parallel 

runs are used to calculate the empirical overhead imposed by the communications 

library. Parallel executions using 2, 8,10, 16, and 25 processors are used to evaluate 

scalability and speed-up of this algorithm. 

Parameters for each test case are supplied in Table 20. Since the purpose of 

this test is to characterize the two implementations, a single random seed for all 

experiments is selected. The random seed corresponds to set 3 from Table 17. 

Results and analysis are presented in (SECTION 6.1). 

Parameter 
selection_operator 

selection rate 
pcross 
stop_criteria 
seed 
report_population 
report_best_.individual 
BBtemplateJilename 

Description 
tournament selection with replacement 
tournament selection w/out replacements 

0.70 
1,000 generations 
0.241816 
on 
on 
BBtemplate.txt 

Table 20: Parameters for Experiment 1 

5.3.2 Experiment 2: Constrained vs. Non-constrained Sequential LLGA 

Objective: Chapter 2 indicates a growing body of information being developed 

about the PSP problem domain. Intuitively, it seems that if we incorporated new 

information in order to constrain our search space, then perhaps we could improve 

search performance. Charles Kaiser pioneered AFIT's expedition into this realm by 

incorporating the constraints developed by Ramachandran [61]. His experiments 

showed great promise, but he encountered some computational problems (see 

SECTION 2.4). As discussed in SECTION 2.5, we have re-evaluated and re- 

implemented Kaiser's work directly into the decoding of the binary chromosome. The 
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validation of this new design and implementation is the objective of this experiment. 

The two implementations are compared for effectiveness and efficiency. 

Methodology. Experiments for each test case are executed as in experiment 1. 

The "best" molecule found by both implementations is compared based upon total 

energy and RMSD from the accepted conformation. Furthermore, since constraining 

the LLGA impacts the algorithm's execution rate, the execution time for each 

implementation is compared to determine the cost of additional calculations. 

Low-level implementation details for the constrained-LLGA are given in 

CHAPTER 4. Parameters for each test case are supplied in Table 21. The results from 

this experiment are summarized in (SECTION 6.2). 

Parameter Description 
selection_...operator tournament selection with replacement 

tournament selection w/out replacement. 
selection rate 4 
pcross 0.70. 0.75, 0.80. 0.90 
stop criteria 1,000 generations 
seed The seeds used follow Table 17. 
report population on 
report best individual on 
BBtemplateJilename BBtemplate.txt contains the Quanta conformation. 

Table 21: Parameters for Experiment 2 

5.3.3 Experiment 3: Constrained Parallel LLGA vs. Non-constrained Parallel 
LLGA 

Objective: The basis for this experiment is to characterize the efficiency of a 

pLLGA that also incorporates the insight gained by the constrained-LLGA. By 

parallelizing the constrained-LLGA, we may receive even larger efficiency dividends 

then from the sequential version. 

Methodology. Experiments for each test case are executed as in Experiment 1. 

A data parallelized design and implementation based upon the sequential constrained- 

LLGA is used for the multi-node experiments. Chapter 4 gives the low-level design and 

implementation details. Comparison between the single node and the 2 node parallel 

runs are used to calculate the overhead imposed by the communications library as in 

experiment 1. Parallel executions using 2, 8,10, 16, and 25 processors are used to 

evaluate scalability and speed-up of this algorithm. RMSD calculations are performed 

on the best resulting chromosome. 
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The implementation of the constrained parallel LLGA is a coupling between the 

constrained-LLGA and the pLLGA. Design and implementation details for each are 

given in CHAPTER 4. Parameters for Experiment 3 are the same as those presented 

in Experiment 2. Results are presented in (SECTION 6.3). 

5.3.4 Experiment 4: Constrained-pLLGA vs. Constrained Para-REGAL 
Implementation 

Objective: The objective of this experiment is to characterize the constrained- 

LLGA against previous AFIT GA/PSP implementations. As stated earlier, Kaiser [37] 

pioneered AFIT's approach to constraining the search space of the PSP problem, and 

as discussed in CHAPTER 2, he encountered a few shortcomings with his 

implementation. On the other hand, he was able to uncover the "lowest" known [Met]- 

Enkephalin energy to date (-30.32 kcal/mol) [52]! 

Methodology. Experiments for each test case are executed using 11 

processors on the Air Force Institute of Technology (AFIT) ABC Beowulf. 

The best chromosome found is compared with Kaiser's results and to the native 

conformation using RMSD. The Quanta defined conformation is used as the template 

for successive testing using the same random seed. Efficiency of the two algorithms is 

also characterized even though Kaiser's implementation is serial. Results are presented 

in (SECTION 6.4). Parameters used are in Table 22. 

Parameter                                                Description 
selection__pperator tournament selection with replacement 

tournament selection w/out replacement. 
selection rate 4 
pcross The best rate as determined by earlier test. 
stop_criteria 1.000: 10.000. and 20.000 generations 
seed The seeds used follow Table 17. 
report., population on 
report_best individual on 
BBternplateJilenarne BBtemplate.txt. With each successive execution the best 

molecule found is fed in as the next BB template. 

Table 22: Parameters for Experiment 4 

5.3.5 Experiment 5: Constrained-LLGA, Non-constrained LLGA, pLLGA, 
constrained pLLGA vs. fmGA 
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Objective: Previously, the most promising Linkage Learning GA (LIGA) 

employed is the fmGA. This test compares the results of the fmGA to the LLGA family. 

It is anticipated that the LLGA family of GAs grossly outperforms the fmGA. 

Methodology. Experiments for each test case are run using 1,2,8,10,16, and 

25 processors on the SP2, and each experiment is executed using 1, 3, 9, and 11 

processors on the ABC Beowulf. Harik's serial implementation [17], which is modified to 

incorporate the CHARMm energy model, is used for the sLLGA. 

The data parallelized implementations are used for the multi-node experiments. 

Chapter 4 gives the design and implementation details. Comparison between the single 

node and the 2 node parallel runs are used to calculate the overhead imposed by the 

communications library. Parallel executions using more than 2 processors are used to 

evaluate scalability and speed-up of the different implementations. (Note: twelve 

processors are the current upper limit upon the ABC Beowulf due to hardware 

constraints.) 

The best molecule found in each run is used in as the next execution template. 

The absolute best molecules uncovered undergo RMSD evaluation against the 

accepted conformation. Results are presented in (SECTION 6.5). 

Parameters for each test case are supplied in Table 23. 

Parameter                                                Description 
selection_operator tournament selection with replacement 

tournament selection w/out replacement. 
selection rate 4 
pcross The best rate as determined by earlier test. The crossover 

rate in the fmGA is set to 0.70 with mutation set as 0.01. 
stop criteria 1,000 generations 
seed The seeds used follow Table 17. 
report_population on 
report_best_individual on 
BBtemplateJilename BBtemplate.txt. With each successive execution the best 

molecule found is fed in as the next BB template. 

Table 23: Parameters for Experiment 5 

5.4 Summary 

The methodology outlined in this chapter is used to analyze the LLGA, the 

parallel LLGA, and the constrained LLGA against previous AFIT PSP algorithm 
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implementations. The objective and parameters for each experiment are laid out as well 

as the basis for validating the results. Finally, we note that the data from AFIT's 

previous experiments is used; we are not going to re-execute past research. 
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6.0 Results and Analysis 

The results from the experiments put forth in Chapter 5 are summarized in the 

following sections. Raw data is available in electronic format. Each experiment was 

executed as documented. Furthermore, some general observations concerning the 

execution behavior of the LLGA are documented in Section 6.7. Our visualization of 

the [Met]-Enkephalin energy landscape is discussed and analyzed in Section 6.8. 

6.1 Experiment 1: Parallel vs. Sequential LLGA 

The first objective of this test is to validate the results from the sequential LLGA 

are equivalent to those obtained by the parallel LLGA (pLLGA). Since the random seed 

were the same during all executions, comparing the "equivalence" between the two 

implementations is little more than ensuring that the same end results are produced by 

both implementations. Table 24 indicates that the energy characteristics for the LLGA 

and the pLLGA are the same. This comparison alone does not irrefutably conclude that 

both Linkage Investigating Genetic Algorithms (LIGAs) behave identically because the 

ruggedness of the energy landscape may skew the results. 

implementation   Optimal Energy Found   Average Population Energy 
LLGA 
pLLGA 

0.351708 
-9.86312 0.351708 

Worst Energy 
18.9437 
18.9437 

Table 24: End of Execution Energy Comparison bewteen LLGA and pLLGA 

It is possible that the [Met]-Enkephalin energy landscape searched by both 

implementations could have similar energy characteristics. Therefore, for further prove 

that both implementations behave similarly, we compared the final populations from the 

two executions. This comparison showed that both LIGAs produced the identical final 

populations. Therefore, we can conclude that both LIGA implementations search 

identical areas of the protein's energy landscape. 

Secondly, the efficiency of the pLLGA in terms of communication overhead, 

speedup, and scalability was characterized. Table 25 lists the average execution times 

for the pLLGA running on the ABC Beowulf and Maui High Performance Computing 

Center's (mHPCC) SP2, respectively. 
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Number of 
Processors 

Average Execution Time 
(seconds) 

Average Execution Time 
(hours) 

1 57123,75 15.87 
2 50839.64 14.12 
3 36970.50 10.27 
5 19677.14 5.47 
9 

11 
15735.44 4.37 
18085.14 5.02 

Table 25: pLLGA Average Execution Times - ABC Beowulf 

Number of 
Processors 

Average Execution Time 
(seconds) 

Average Execution Time 
(hours) 

1 85403.22 23.72 
2 87660.46 24.35 
3 57451.06 15.96 
5 40280.68 11.19 
9 33578.82 9.33 
11 29388.20 3.16 
17 32562.04 9.05 
26 24699.22 6.86 

Table 26: pLLGA Average Execution Times - Maui SP2 

The total overhead is the difference between the cost of performing the problem 

on a single processor and the cost of performing the same task on the parallel 

architecture. This "cost" represents the amount of time the parallel implementation 

consumes performing communications, which is the penalty for using a parallel 

application. Equation 21 illustrates the communication overhead (T0) where Tp is the 

parallel time and Ts is the best sequential time to complete the task [36]: 

T = T -T \o p & 

Equation 21: Total Overhead 

By subtracting the single processor version from the two-processor version of 

the pLLGA executed on like processors, we calculated the total overhead for the pLLGA 

implementation as 0.57 hours on the AFIT Beowulf and 0.63 hours on the mHPCC SP2. 

These two implementations perform the same amount of work except the 2 processor 

pLLGA farms out its fitness calculations to a slave processor. Of course, the calculated 

overhead hours represent the total overhead accumulated over 5,000 generations. The 
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total overhead per generation is only 0.41 (Beowulf) and 0.45 seconds (SP2), which is 

much more reasonable when considering the amount of data being passed between the 

two processors. 

Speedup (S) is a measure capturing the relative benefit of solving a problem in 

parallel. Equation 22 defines the speedup calculation [36]. 

Equation 22: Speedup 

There are two terms with which one must be familiar with when discussing 

speedup. The first is linear speedup. Linear speedup increases proportionally with the 

number of processors. Super-linear speedup, the second term, is when S > p (p is the 

number of processors). Although, this phenomenon may be observed it is usually due 

to either 1) a non-optimal sequential program or 2) the parallel programs ability to take 

better advantage of the memory hierarchy [36]. Figure 34 illustrates the speed-up 

obtained by parallelizing the LLGA over the range of possible ABC Beowulf and mHPCC 

SP2 processors. 
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Figure 34: pLLGA Speedup 

From Figure 34, the ABC Beowulf speedup curve indicates that once 5 

processors have been applied to the task no more speedup is obtained. Actually, we 

see a decrease in the achieved speedup. What happens at the five processors point is 

that the ratio between computation and communication shifts from more computation 

time required to more communication time required. The steep decline from 9 

processors to 11 processors shows the addition of the 200 MHz. Pentium Micron. This 

much slower processor hampers the computational performance of the implementation 

as well as the communications between the processors. The standard deviation and 

variance for Figure 34 and Figure 35 is provided in Table 27. 
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Beowulf 
Number of      Standard 
Processors      Deviation 

Variance 
SP2 

Standard 
Deviation 

Variance 

1 36645 1342880866 ?4 5475 
2 458 209768 G039 3G463842 
3 7664 58743450 4575 20931207 
5 12 142 2565 G5R1009 
9 84 4936 G51 423401 

11 58 3416 1708 2917504 
17 ^iiiisiiiiiii^iii — 397 157565 
26 HllllBi^BIlBSIllIIHlllMlIlllÄiliHllllHllllI 1498 2243089 

Table 27: Statisticals For pLLGA Implementations 

On the mHPCC's SP2, the pLLGA seems to achieve "some" speed-up each time 

we increased the number of processors. This is due to the optimized communications 

backbone of the SP2 that tilts the balance of computation to communication ratio 

towards the computation side of the equation. On the SP2, there are dedicated 

processors to handle the communications, but on AFIT's Beowulf there are no dedicated 

processors just for communication. Therefore, every time a message is passed 

additional communication overhead is generated on AFIT's Beowulf. 

Finally, looking at the efficiency (E) of the pLLGA implementation, we see the 

same behavior. Efficiency, governed by Equation 23, is a measure of the amount of 

time for which a processor is accomplishing useful work (i.e., not idle) [36]. The 

efficiency of the pLLGA steadily increases until the 5-processor mark from which point it 

continues to drop off. Once again, this indicates that the communication overhead is 

beginning to dominate the parallel performance equation. The initial dip in the ABC 

Beowulf's performance indicates the move from 2 processor (the sequential application) 

to 3 processors. On the other hand, the efficiency of the pLLGA on the SP2 is horrible. 

The SP2/pLLGA combination reaches 50% efficiency at 3 processors then sharply 

drops to only 13% efficiency with 26 processors. This indicates that the pLLGA is not 

scalable on the SP2. 

Equation 23: Efficiency 
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Figure 35: pLLGA Efficiency 

6.3 Experiment 2: Constrained vs. Non-constrained Sequential LLGA 

Our tests indicate that the inclusion of the constraints into the decoding of the 

chromosome add a negligible amount of overhead to the LLGA's execution time. 

ABC BEUWOLF                   IBM SP2 
CLLGA            LLGA          cLLGA           LLGA 

Average Execution Time (sec) 
Average Execution Time per 
Energy Calculation (sec) 

40902 36343 89235 85403 
0.1383 0.1213 0.2811 0.2638 

Table 28: Constrained vs. Non-Constrained 

Table 28 indicates that for both platforms the inclusion of the constraints into the 

decoding of the chromosome behaves as expected. Since the re-engineering of the 

AFIT's CHARMm energy model to include Ramachandran constraints meant including 

one additional add, subtract, multiply and divide operation per chromosome evaluated, it 
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was not expected that this "new" methodology would overwhelm the computational time 

of the algorithm. 

On the other hand, the inclusion of the constraints had a noticeable affect on the 

effectiveness of the algorithm. Figure 36 and Figure 37 show the energy 

characteristics for the cLLGA and the LLGA, respectively. As can be seen in Figure 36, 

the cLLGA quickly narrows the breath of the search area as indicated by the sharp initial 

drop in the energy trend lines. This is due to the constraints put on the search space 

and is not an effect of a change to the LLGA algorithm. Finally, the final energies 

uncovered by the cLLGA are much better than the LLGA as indicated in Table 29. 

Algorithm      Optimal Energy Average Ener< ay       Maximum Energy 
[•[Hffi^H -16.3584 -10.426 -1.87393 
fflcll^H   -9.86312 0.351708 18.9487 

Table 29: Final Energy Characteristics for the LLGa and cLLGA 
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Figure 36: Energy Characteristics of the cLLGA 
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Figure 37: Energy Characteristics of the LLGA 

6.4 Experiment 3: Constrained Parallel LLGA vs. Non-constrained Parallel 

LLGA 

As stated earlier in Section 6.3, the additioned overhead added from the 

constraints did not noticeably effect the execution time of the LLGA. Therefore, the 

comparison between the overhead, speed-up, and efficiency of the constrained parallel 

LLGA (cpLLGA) and the non-constrained pLLGA does not reveal startling new 

information. Table 30 compares the calculated overhead for these two 
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implementations. As expected, there is not much difference between both 

implementations' overhead. 

Algorithm 
pLLGa 
cpLLGA 

Beowulf 
0.57 hours 
2.31 hours 

mHPPC SP2 
0.63 hours 
4.76 hours 

Table 30: Total Overhead for cpLLGA and pLLGA 

On the AFIT's Beowulf, the overhead per algorithm is 0.41 seconds (pLLGA) and 

1.66 seconds (cpLLGA) per generation, whereas, on the mHPCC SP2 the overhead per 

generation per algorithm is 0.45 seconds and 3.42 seconds, respectively. The higher 

overhead is attributed to the differences in processor capability. 

Figure 38 shows the speedup of the cpLLGA as compared to the pLLGA on 

both test platforms. As expected, the speedup of the cpLLGA is nearly identical to the 

pLLGA. There is a noticeable difference in the cpLLGA executing on AFIT's Beowulf 

with five or more processors. In this configuration, the cpLLGA's slave processors are 

required to perform additional computations. This shift in computation is reflected by the 

increase time spent in parallel operations that directly affect the speedup and efficiency 

calculations. The sharp decline in speedup for the cpLLGA is a result of adding the 

much slower 200 MHz. Pentium Micron. 

A similar pattern is seen in Figure 39. Figure 39 shows the efficiency of the two 

different algorithms. Again, the additional calculations of the cpLLGA makes this 

algorithm more efficient because now each slave processor is required to perform a 

greater share of the overall computation. Therefore, these processors are idle for less 

of time as compared to the slave processors in the pLLGA implementation. 
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Figure 39: Efficiency Comparison between the pLLGA and cpLLGA 

6.5 Experiment 4: Constrained-pLLGA vs. Constrained Para-REGAL 

Implementation 

Although Kaiser does not provide any efficiency evaluation for his Para-REGAL 

system, he does supply enough data to piece together a rough comparison between our 

respective approaches. Kaiser executed his experiments for 100,000 evaluations using 

a population size of 50 on four separate islands [37]65. On average, these tests 

expended 4.675 hours [37]. The constrained-LLGA (serial version) used a population 

size of 50 and terminated with 250,051 evaluations and consumed 11.362 hours on 

average. Therefore, the constrained-LLGA accomplished 2.5 times the amount of work 

65 There is no data indicating the number of processors used. We have assumed he used 1 
processor per island for a total of four processors. 
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in approximately 2.43 times the amount of time. Thus, constrained-LLGA is slightly 

more efficient than the Para-REGAL system. Expanding this comparison to include the 

constrained-pLLGA using only three processors66, the constrained-pLLGA outperforms 

Kaiser's Para-REGAL system. This implementation using fewer processors 

accomplished more than twice the amount of work (250,051 evaluations) in less than 

twice the amount of time (8.195 hours). 

These results could be skewed towards the constrained-pLLGA because, 

although Kaiser does not explicitly state the system architecture used to evaluate his 

Para-REGAL system, the best available systems could have been the Ultra Sparc 

Workstation Network. We excluded this system from our test platforms because of its 

much smaller computational power in comparison to the IBM SP2 or AFIT ABC Beowulf 

(see Chapter 5). Our initial testing indicated that the Ultra Sparc Workstation network 

ran nearly twice as long to execute the same application as the ABC Beowulf. Taking 

this into account greatly closes the gap between the efficiencies of these two separate 

approaches. 

6.6 Experiment 5: Constrained-LLGA, Non-constrained LLGA, pLLGA, 
constrained pLLGA vs. pfmGA 

As seen in Figure 40, the pfmGA outperforms every member of the LLGA 

family, but this was not expected from the algorithmic discussion in Chapter 3. The 

LLGAs were an order of magnitude less complex than the fmGA. The better overall 

execution times for the pfmGA can be explained by better parallelism. Gates pfmGA 

demonstrated super linear speedup using 2, 4, and 8 processors [15]. Furthermore, 

even when his algorithm was rated as less than linear speedup (+16 processors), Gates' 

pfmGA implementation was still achieving 9-fold speedup. The LLGA never achieved 

above 4-fold speedup on the ABC Beowulf. The LLGA family suffers from a very closely 

matched communications to computations ratio. Therefore, parallelization of this 

algorithm does not achieve the anticipated dividends. 

From an effectiveness standpoint, again the LLGA family is grossly 

outperformed. The most optimal solution generated by the LLGA implementations had 

a conformation energy of -18.22 kcal/mole and an RMSD of 17.124 this protein was 

uncovered by the pLLGA using 0.241816 as the random seed. The RMSD calculation 

66 One master and only two slaves. 
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was performed against the "optimal" QUANTATM [Met]-Enkephalin molecule discussed 

in Section 5.1. 

Average Execution Time per Processor 

140000 

Figure 40: Comparison Between Linkage Investigating Gas 

6.6 LLGA Observations 

Additional observations were made concerning the LLGA's performance that did 

not correspond to any of the test cases documented in Chapter 5. Furthermore, these 

"observations" were made over the course of the five tests and are considered as 

general conclusions concerning the performance of the LLGA implementations. 

The first major observation that concerned us greatly is the LLGA's inability to 

maintain building blocks (BBs) once they are within the population. The following 

figures represent the average number of BBS contained within the population per 

generation for the pLLGA. 
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Figure 41: BBs Uncovered and Maintained for the pLLGA and Random Seed 1 
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Figure 42: BBs Uncovered and Maintained for the pLLGA and Random Seed 2 
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Figure 43: BBs Uncovered and Maintained for the pLLGA and Random Seed 3 

Figure 41, Figure 42, and Figure 43 show this inability to maintain good BBs 

when the BBs are uncovered. Furthermore, Figure 43 is the pLLGA test case that 

produced the most optimal overall energy out of all the test cases. As expected due to 

the ruggedness of the energy landscape, it is possible to calculate a rather low 

conformation energy and have nonrepresentational67 dihedral angles of the protein. The 

ability of the cpLLGA to uncover and maintain good BBs is better, but this is only due to 

the constrained search space. It is not at all due to any algorithmic difference. Figure 

44, Figure 45, and Figure 46 represent the cpLLGA's ability to maintain BBs using the 

same random seed as in Figure 41, Figure 42, and Figure 43, respectively. 

67 The dihedral angles do not represent the dihedral angles of the QUANTA™ "optimal" solution. 
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Figure 44: BBs Uncovered and Maintained for the cpLLGA and Random Seed 1 
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Figure 45: BBs Uncovered and Maintained for the cpLLGA and Random Seed 2 
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Figure 46: BBs Uncovered and Maintained for the cpLLGA and Random Seed 3 

Secondly, it was decided to increase the selective pressure of the LLGA by 

changing the selection operator to see if this would increase the LLGA's ability to 

maintain good BBs. Therefore, the selection operator was changed to keep the best 

parent and the best child form the group of two parents and their two offspring. As can 

be derived from Figure 47 and Figure 48, using this selection operator made the 

cpLLGA thrash in respects to its ability to finding and maintaining good BBs and 

converging to a particular location in the search landscape. Figure 48 shows the 

cpLLGA's inability to converge after 5,000 generations (250,051 evaluations). Due to 

time constraints, we were not able to execute this test past the 5,000 generation mark. 

We presume that the most optimal energy uncovered will not change appreciable 

because according to the data the minimum energy had not changed since the 2,500th 

generation. 
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Figure 48: Energy Characteristics of the New Selection Operator 
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Figure 49: Energy Characteristics of the New Selection Operator (smaller scale) 

6.7 Energy Landscape Visualization 

Finally, we were able to incorporate 11,189 [Met]-Enkephalin configurations 

uncovered by the LLGA into a visualization of the landscape. Figure 50 shows these 

points. The first point on the graph in Figure 50 is the first entry of Table 31 and the 

last point is the second entry of Table 31. Therefore, Figure 50 can be considered an 

energy landscape visualization of the points between 

0000000000101010011001001010001011100010001110000110001100011111011101 

1101001001000101001111100010110110001101001101011110111100110010101100 
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1011101000100000011011010100010000110110100111111111011010101111000110 

101001101000011110101000010000 and 

1111111111111110110001110100011101111111001000010000110000111101000001 

1101010110001111011101101110001011000100000110001011000011011101000101 

0110110000100010111110001111001100010100001101101111011010110011011100 

11110101110000010110010101100. Table 32 and Table 33 indicate the dihedral 

angles represented by these two molecules of [Met]-Enkephalin. 

Binary Chromosome Representation 
000000000010101001 
000111110111011101 
110101111011110011 
010000110110100111 
1110101000010000 
111111111111111011: 
001111010000011101 
011000101100001101 
001100010100001101 
0101100101011001 

10010010100010111000100011100001100011 
00100100010100111110001011011000110100 
00101011001011101000100000011011010100 
11111101101010111100011010100110100001 

00011101000111011111110010000100001100 
01011000111101110110111000101100010000 
11010001010110110000100010111110001111 
10111101101011001101110011110101110000 

Energy 
919437.230312 

72282423.106913 

Table 31: Limits of the Landscape Visualization 

Dihedral Angle (degrees) 
Residue O ¥ CO %i Jte %3 Z4 

Tyr -180.000 58.360 -75.938 -119.531 81.562 54.140   

Gly 79.453 -100.898 17.227 — — _ _ 

Gly 167.695 115.664 -150.82 _ _ _ 

Pho 138.867 -40.430 -104.414 2.109 118.477 _ 

Met 85.430 159.609 5.62 -161.016 44.648 127.266 -137.109 

Table 32: Dihedral Angles for Molecule One of the Visualization 

Dihedral Angle (degrees) 
Residue 0> V CO Xi %2                           %3 %4 

Tyr 179.648 172.969 -16.523 114.258 -28.125 165.586 — 

Gly 134.649 -133.594 -111.445 — — — _ 

Gly 112.852 120.234 -93.164 ___ _ — -— 

Phe -25.313 68.906 -145.547 16.523 21.094 _ 

-172.266 Met 94.570 -102.656 -58.711 97.031 -103.008 127.617 

Table 33: Dihedral Angles for the Last Molecule of the Visualization 
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Figure 50: Energy Landscape Visualization 
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Figure 51: Condensed Energy Landscape Visualization 

Figure 51 is a more limited view of the same energy landscape area bounded 

between +25 and -25 kcal/mole conformation energy. The visualization illustrates a 

picture of the landscape we did not expect to find. We had anticipated finding certain 

segments of the landscape that smoothly dipped into lower energy regions. But Figure 

51 clearly indicates that many of the low energy conformations are at the bottom of 

steep troughs in the landscape. Furthermore, we must consider that Figure 51 is a 2- 

dimensional representation of the true 25-dimensional landscape. Therefore, the widths 

of these energy troughs depend on the sensitivity of each independent variable. For 
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instance, if we view the energy trough by pairwise independent variables68 in order to 

determine the dependency the relationship represents, we may find that some of the 

relationships indicate wide valleys while other relationships between the independent 

variables are narrow chasms. The narrow chasms are of great concern to us because 

they represent high sensitivity. Any change in the two variables representing the chasm 

would trigger an enormous change in the protein's calculated energy. The first and third 

circled areas of Figure 51 represent possible deep chasms, whereas the second, fourth, 

and fifth circled areas seem to indicate possible wide valleys. 

These two figures do represent a "general idea" we have maintained for years. 

Basically, that the energy landscape of [Met]-Enkephalin is very rugged. Our 

visualizationt emphasizes that the landscape is extremely rugged69 and it suggests the 

possibility that the landscape is also irregular. Furthermore, these figures indicate why a 

deterministic search method would flounder. Because the landscape is obviously 

riddled with low energy values surrounded by steep barriers, a deterministic method 

would enter the first low laying region70 of the search space and not be able to escape. 

On the other hand, simulated annealing, which in some respects is similar to a 

deterministic search, is able to initially escape the first few local minima encountered 

because the progressively stronger penalizing function has not become sufficiently 

strong enough to anchor the algorithm to any particular local. As the penalty function 

increases, there would be more of a tendency to become trapped at the next best local 

minima. 

6.8 Summary 

Chapter 1 presents the objectives for this thesis. This chapter presents 

empirical results from the experiments designed in Chapter 5 to meet those objectives. 

The performance of the LLGA, pLLGA, cLLGa, and the cpLLGA are compared using 

several different efficiency metrics. It is recommended that further test be conducted to 

statistically characterize this results71. Finally, a portion of the search landscape was 

revealed through our proposed visualization methodology. 

68 In this representation the two independent variables would be on the x and y-axis and the 
energy of the z-axis. 
69 The landscape turned out to be much more rugged then what we anticipated. 
70 I.e. find the first local minima. 
71 Appendix J discusses possibly methods. 
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7.0 Conclusion and Recommendations 

This investigation integrating the Protein Structure Prediction (PSP) problem and 

the Linkage Investigating Genetic Algorithms (LIGAs) over the past 18 months involved 

literature reviews, re-engineering the LLGA design and source code, uncovering 

esoteric aspects of AFIT's CHARMm energy model implementation, designing and 

implementing a visualization methodology, and designing and executing the appropriate 

experiments. These efforts have culminated in the realization of the goals we set forth 

in Chapter 1. The following two sections look at what we were able to conclude, the 

contributions from this research and some recommendations for future research. 

7.1 Conclusions 

Our application of the Linkage Learning GA (LLGA) to the PSP problem resulted 

in the conclusion that the LLGA is an inefficient software application shown in Section 

6.1. Our analysis clearly indicates that the LLGA does not parallelize as well as past 

AFIT GA implementations. This is primarily due to the granularity of the parallelizable 

portions of the LLGA algorithm. Furthermore, the effectiveness of the LLGA is worse 

than previous implementations. The effectiveness of the algorithm may be increased by 

investigating methods to incorporate building block information. We understand from 

our re-engineering of the LLGA source code that the LLGA does not explicitly use the 

information gained by comparing the chromosomes of the population to the building 

block template. Therefore, the LLGA is basically accomplishing additional 

comparisons/calculations that are unnecessary and lead to additional computational 

overhead without benefiting the search process. 

The algorithmic contribution of the LLGA is its ability to overcome the disruptive 

effects of crossover. LLGA accomplishes this task by the inclusion of introns into the 

chromosomal representation. But, again, our research has shown that as we moved 

from small contrived academic problems to complex real-world applications the number 

of introns required by the LLGA explodes! This indicates the LLGA has an inability to 

scale to larger problems, which severely hampers its usability in real-world applications. 

As the number of introns grows the LLGA's search for the canonical form takes an 

increasingly larger toll on the computational performance of the algorithm. Again, this 

puts a damper on our desire to recommend the use of the LLGA in large real-world 

118 



applications72. Furthermore, in our experiments we used 19 times more introns than 

exons and we were still unable to maintain good building blocks (i.e., cancel the 

disruptive effect of crossover). This is discussed in Section 5.3 and Section 6.6. 

On the other hand, our attempt to include problem domain constraints directly 

into the decoding of the chromosome shows great promise. The additional computation 

overhead of this scheme is negligible! Furthermore, this transformation process does 

not lead to "islands of feasibility" where the GA becomes trapped as it did for Kaiser 

[37]. See Section 6.3 and Section 6.4. Our testing has shown the cpLLGA is better at 

uncovering and propagating building blocks. Shown in Section 6.6. 

Finally, our novel approach to visualizing the PSP landscape traversed by any 

GA shows an ability to gain insight into both the algorithmic processing and the possible 

energy landscape structure of the specific protein in question. Insights gained so far 

from our limited instantiated visualization has substantiated our current notation that the 

PSP energy landscape has an extremely rugged and irregular domain. The 

visualization of the landscape is shown in Section 6.7. 

7.2 Contributions 

The general conclusions drawn from this research lead to the following 

contributions to the algorithm domain and the PSP problem domain. The key products 

produced as part of this thesis effort are: 

1) An ineffective and inefficient building block propagating GA when applied 
towards the PSP problem. 

2) An insightful solution space visualization methodology. 
3) An effective and portable PSP search space-bounding function that can be 

incorporated into any GA. 

7.3 Recommendations 

Our recommendations for future research efforts lie in modifying the LLGA, 

incorporating more problem domain information into the process in order to further 

constrict the search space, and redirection of our primary focus. 

Modifying the LLGA algorithm is a possibility for future research. The LLGA 

chromosomal data structure could be re-engineered to make use of the information 

72 For our 240 bit chromosome the LLGA required 4650 introns for a crossover disruptive 
probability of 0.05%. 
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gleaned from the building block template. A possible way to do this is by adding a 

weight to the chromosome that accounts for the inclusion of a building block within the 

canonical form. This would increase the LLGA's ability to recognize building blocks 

within chromosomes of the population and maintain this information. This concept is 

similar to the infected genes evolutionary algorithm [86]. 

For the PSP problem domain, we recommend further research into the 

applicability of constraints beyond Kaiser's work [37]. The search space for the PSP 

problem constrained solely by Ramachandran constraints is still enormous! But there 

are other avenues of constraints, which could be included into our model such as affinity 

to form hydrophobic or hydrophilic structures, side-chain placement strategies, and 

stehe constraints. These "other" constraints could lead to an even smaller, yet still 

intractable, search space. 

Furthermore, AFIT's model needs to be validated against larger molecules. 

Current and past research has focused on small proteins73, but AFIT has yet to show 

that the combination of any genetic algorithm and the AFIT's CHARMm energy model 

can handle larger proteins consisting of hundreds of residues. This research should 

provide additional insight into the general applicability of GAs to the PSP problem. 

Finally, there are often conflicting methods for calculating a protein's tertiary 

structure. These different methods could be employed in a multi-objective approach to 

afford the biochemist greater insight into the PSP problem. Table 34 indicates possible 

secondary fitness functions: 

Category                            Characteristic 
Electromagnetic Energy transfer or reflection 
Entropy Information content and (dis)order 
Environmental Environmental benefit or damage 
Geometrical Structural relationships 
Physical (Energy) Energy emission or transfer 
Physical (Force) Exerted force or pressure 

Table 34: Possible Fitness Functions 

73 [Met]-enkephalin is a pentane. 
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Appendix A. Background on the Protein Folding and Protein 
Structure Prediction Problems 

This appendix contains background material on the protein folding and protein 

(or polypeptide) structure prediction problems, most of which has been presented in 

previous AFIT theses, particular those of Brinkman (18) and Gates (15). Section A.1 

defines terminology in the biochemistry domain. Section A.2 describes the expensive 

experimental techniques used to determine the structure of proteins. Finally, Section A.3 

examines various models used to predict the structures of polypeptides and proteins. 

The protein folding problem (PFP) has been recognized as a National Grand 

Challenge problem in biochemistry and high-performance computing (11). The 

challenge is to find a method to predict the three- dimensional geometry of a protein 

based on the sequence of its components. A solution, which would provide knowledge 

about the function(s) of individual proteins, is also the first step toward solving the 

inverse protein folding problem (IPFP) (8, 71). The goal of the inverse folding problem is 

to determine a sequence (possibly more than one) that folds to a specified three- 

dimensional structure. 

The difference between the two problems is best characterized by the capability 

that their solution would provide. A PFP solution would enable the evaluation of many 

proteins in a search for one with a specific property or function. In contrast, an IPFP 

solution would provide a direct mechanism to design a protein with specified 

characteristics (8:25-26). Possible applications include: pharmaceuticals with few or no 

side effects; energy conversion and storage capabilities (similar to photosynthesis); 

biological and chemical catalysts and regulators; angstrom scale information storage; 

and possible optical/chemical shielding from harmful radiation sources (8:25) (71:5) 

(93). 

A.1 Introduction to Proteins and Associated Terminology 

Proteins (polypeptides) are linear sequences of the 20 naturally occurring amino 

acids. Each amino acid consists primarily of three common backbone atoms (a nitrogen 

and two carbons [N-Ca-CY] bonds, called the side-chain (Sj), connected to the Ca carbon 

atom. A particular protein is defined by its unique amino acid sequence, which is known 

as the primary structure of the protein (8:24)(71:2)(69:49). 
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As the amino acids form into proteins via peptide bonds, they give up a water 

molecule. The linked amino acids are called residues. Figure 32 depicts a generic 

protein composed of three residues (amino acids). In most contexts, the terms amino 

acid and residue are used interchangeably. The primary structures of approximately 

50,000 naturally occurring proteins are currently known and this number is expected to 

double every year, due largely to the Human Genome Project and the ease with which 

sequences are experimentally determined (71:5)(91). In fact, the sequence 

determination and also fabrication is fully automated. 

Subsequences of proteins tend to exhibit regular patterns. Two common patterns 

are oc-helices and ß-sheets. These describe the secondary structure of a protein (8:24). 

Secondary structures result only when at least four or five consecutive amino acid 

residues have similar <\> and y values (57). Some researchers are investigating the utility 

of predicting secondary structure as the first step of tertiary structure prediction (69:50). 

This technique has had limited success. The problem is that even though certain 

residues are found more frequently in a specific secondary structure, the greatest 

preference is only twice that of other secondary structures. In most cases, the 

preference is much smaller (108:422). Table 22 identifies the values for ((j), \\r) angle 

pairs that according to Horton (57) ideally define commonly occurring secondary 

structures. 

Secondary Structure Phi (0) Psi (y) 
a-helix (right hand) -57 -47 
a-helix (left hand) 57 47 
3io Helix (right hand) -49 -26 
Antiparallel [3-sheets -139 235 
Parallel ß-sheets -119 113 
Collagen Helix -51 153 
Type II turn (second 
residue) 

-GO 120 

Type II turn (third residue) 90 0 
Fully extended chain -180 -180 

Table 35: Phi & Psi Pairs of Common Secondary Structures 

The three-dimensional structure of a protein is the major determinant of its function. This 

three-dimensional shape is called the tertiary structure or conformation of the protein. 

Proteins assume their native conformation, which is unique and typically compact, in 

their natural biological environment (typically in aqueous solution, at neutral pH and 
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20—40° C) (8, 71). A protein in its native conformation is only slightly more stable than 

the various conformations with marginally higher energies. Normally, there is only a 10 

kcal/mol energy difference between the completely folded and unfolded conformations. 

This single fact is responsible for the major difficulty of the protein folding problem (8:24- 

-25) (71:2~4) (69:50). 

There are two principle coordinate systems frequently used to identify the 

position of the atoms in a molecule. The Cartesian coordinate system uses a three 

dimensional coordinate (Xi; y; Z|), 1 < i < n, where n is the number of atoms in the 

molecule. An arbitrary atom, usually Ca1 is assigned to the origin. This system is most 

useful to compute the distance, dtj = ■^](xi-xj)+(yj -yj) + (z, - z}) between two 

atoms. With this system each molecule has 3n degrees of freedom. 

Internal coordinates is the other coordinate system. The dihedral angle 

approach defines position of all atoms in a protein from the position of one atom (usually 

at the origin), the bond length of each covalently bonded pair of atoms, the bond angle 

formed by each triplet of bonded atoms, and the dihedral angle formed by each bonded 

group of four atoms (see Figure 56, Figure 57, Figure 58). Given this set of 

parameters, every protein has 3n-6 degrees of freedom where n is the number of 

atoms. However, the bonds and bond angles are relatively rigid, therefore the 

independent dihedral angles are left as the only dominant factor to determine the tertiary 

structure of a protein. Hence, the degrees of freedom are effectively reduced by a 

factor of approximately 2/3 (8:26) (69:50). 

Each amino acid contains a <|), vj/, and co dihedral angles and zero or more %\ 

dihedral angles as shown in Figure 1. 

If we discretize the domain of the dihedral angles so that there are d possible 

values, then the size of the search space is given by dN where N is the number of 

independently variable dihedral angles. Given a very coarse 20° discretization of the 0 - 

360° and a small protein with 24 independently variable dihedral angles, the search 

space contains 1824 ~ 1.3x1030 conformations. Table 23 shows the time required to 

enumerate the search space on current and envisioned high performance computers 

(under the optimistic assumption of one evaluation per clock cycle) (107:7)! (Giga-, 

Tera-, and Peta-FLOP computers perform 10 9 ; 10 12 , and 10 15 floating point 

operations per second, respectively) Therefore, if we hope to find the single native 
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conformation of a protein, we must have access to efficient search algorithms that 

severely prune the search space. 

Computer Speed 
1 GigaFLOP 
1 TeraFLOP 
1 PetaFLOP 

Execution Time (years) 
41 trillion 
41 billion 
41 million 

Table 36: Enumeration Time of 1.3x1030 Search Space at One Solution per Clock 
Cycle 
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Appendix B. Current Methods for Protein Structure Prediction 

B.1 Introduction 

A protein consists of a sequence of amino acids. Each acid is identified by an 

attached sidechain [18]. A single sidechain group is a rigidly connected sequence of 

atoms commonly referred to as a "peptide unit" or a "residue" [19]. Each residue is 

read left-to-right beginning with the amino and ending at the carboxyl terminal [19] (see 

Figure 1). The sequence of amino acids, joined together by peptide bonds (i.e. several 

peptide unit or residues represented as a 1-dimensional model), form the basis for what 

is referred to as the primary structure of a protein. These structures help us to 

understand the chemical configuration of the protein, but the biological role of a 

particular protein is defined by its tertiary structure [20]. The atomic forces interacting 

between the atoms within the protein molecule form the tertiary structure. The tertiary 

structure is a twisted, grooved, helixed, sheeted, and creviced 3- dimensional structure. 

It is these crevices and grooves of a protein's complex folds that allow the protein to 

attach to other molecular structures and define its function [20]. Within these twisted 

and tangled structures are regularly occurring patterns called secondary structures. 

Secondary structures are believed to be the stepping stones in the process of folding a 

protein [22]. The secondary structures are classified either as right- or left-handed 

alpha helices, beta-sheets, or random coils [21]. It is the final tertiary structure that is of 

utmost importance to biochemists and this state is called the natural molecular 

conformation. The protein folding problem can, therefore, be described as searching for 

this natural conformation state given only the primary structure of a protein. Knowing 

the structure of biological molecules allows scientists to better understand how they 

work and can lead to better drugs and treatments for disease. 

B.2 Practical Methods for Calculating a Protein's Native Structure 

In order to understand and manipulate proteins, we must be able to reliably 

predict the tertiary structure of the protein in a reasonable amount of time. Generally, 

there are three different methods to determine the conformation state of a protein: X-ray 

Crystallography, Nuclear Magnetic Resonance, and Computational Models. X-ray 

crystallography and nuclear magnetic resonance spectroscopy are direct methods of 
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measuring the position of each atom within a protein. These methods are extremely 

time consuming and laborious! Computational modeling, on the other hand, is 

somewhat less time consuming and easier to conduct, but these methods are 

approximations and may not precisely reflect the native structure of a particular protein. 

Although, computational modeling has many shortcomings, it is still the greatest area of 

interest to biochemists because this form of calculating the native structure provides the 

greatest possibility of shortening the gap between the discovery of a new protein and 

learning its conformational structure. This section provides a brief overview of the x-ray 

crystallography and nuclear magnetic resonance spectroscopy, and an in-depth look at 

several different forms of computational modeling. 

B.2.1 X-ray Crystallography 

Scientists have used X-ray diffraction patterns since the early part of this century 

to aid their studies of molecules. X-ray crystallography was the first technique to reveal 

the precise 3-dimensional position of most of the atoms in a protein. In order to 

understand how x-ray crystallography works, we must remember that an atom consists 

of a nucleus surrounded by electrons. The electrons scatter the x-rays in all directions. 

The intensity of scattering from a given atom is dependent largely on the number of 

electrons present, and can be thought of as a fingerprint for a particular element by the 

"atomic scattering factor" [27]. If a periodic array of atoms is present, constructive and 

destructive interference patterns result. This observed diffraction only is seen in certain 

directions and for a given orientation of the periodic array with respect to the x-ray 

source. Since crystals consist of molecules arranged periodically, a crystal acts as a 

nearly perfect diffraction grating for the x-rays [27]. In order to "see" an object, its size 

has to be at least half the wavelength of the electromagnetic radiation being used to 

view it [28]. Therefore, the x-rays routinely used in crystallography have wavelengths of 

0.7 to 1.7 Angstroms [27]. 
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The simplified steps to this procedure are as follows [22]: 

1) First, crystals of the protein of interest are needed. NOTE: The quality of the 
crystal determines the ultimate resolution of this analysis. 

2) The protein crystal is mounted in 
a capillary and positioned in a 
precise orientation with respect to 
the x-ray beam and film. Precise 
motion of the crystal results in an 
x-ray photograph consisting of a 
regular array of spots. (See 
Figure 52.). 

Figure 52: X-ray Diffraction Pattern for 
protein Lac Repressor [27] 

3) The intensities of the spots are 
measured. These intensities are 
the basic experimental data of 
the analysis. 

4) Next, the image of the protein is 
reconstructed by applying a 
Fourier transform, and a 
electron-density map is created. 
The electron-density map gives 
the density of electrons at a large 
number of regularly spaced 
points in the crystal. (See 
Figure 53.) 

Figure 53: Electron Density Map [29] 

5) Finally, the electron-density map 
is interpreted. 

A resolution of 6 Angstroms (Ä) reveals the 

positions of the atoms in the backbone, but 

few other structural details. This is because atoms that comprise the polypeptide 

backbone are centered 5 and 10 Ä apart. Maps at higher resolutions are needed to 

delineate groups of atoms that lie from 2.8 to 4.0 Ä apart, and individual atoms that are 

between 1.0 and 1.5 Ä apart [22]. 
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B.2.2 Nuclear Magnetic Resonance Spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy was made possible by Felix 

Bloch and Edward Purcell in 1952. Until then, magnetic resonance was a measurable 

phenomena in which atoms were shot through a magnetic field as a beam [23]. I.I. 

Rabi laid this groundwork in the theoretical properties of NMR research, but it was Bloch 

and Purcell's development of NMR instruments that could measure this phenomena in 

bulk materials such as liquids and solids that open up the door for using NMR as a 

means to measure the natural state of proteins [23]. NMR spectroscopy is based on the 

measurement of the absorption of electromagnetic radiation in the radio frequency 

region between 4 and 750 MHz [24]. A simplified description of this technique follows: 

1) The sample is submitted in a deuterated solvent and transferred into the 
NMR tube. 

2) The tube is placed into a magnetic field. 
3) A radio frequency pulse is then sent through the sample solution in order to 

orient the magnetic moments of the nuclei in the solution. 
4) As the magnetic moments relax, they exhibit a free induction decay with time. 

The sample eventually relaxes to its equilibrium state. 
5) The free induction decay is Fourier transformed into a NMR spectrum. 

The relaxation process is highly informative about the macromolecular structure and 

dynamics because they are highly sensitive to both the geometry and motion [22]. The 

NMR spectrum displays the chemical shifts for the individual nuclei; and from these 

shifts, the structure of the compound can be determined [25]. A sample spectrum 

display is provided in Figure 54: 

128 



Broadband decoupled C-13 NMR of p-methoxybenzaldehyde 
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Figure 54: Sample 1D NMR Spectrum [26] 

NMR spectroscopy is one of the most powerful tools available to chemists and 

biochemists for the elucidation of the structure of both organic and inorganic specimens. 

B.2.3 Computational Models 

Computational engines are used to calculate molecular energies and properties 

associated with these energies [30]. There are three major classes of computational 

engines: 1) Empirical, 2) Semi-Empirical, and 3) Ab Initio. Previous AFIT research on 

the PFP problem has centered on using semi-empirical engines. Therefore, the 

following discussions covering these three forms of computational engines will provide 

more depth and analysis into a particular semi-empirical method (i.e. the CHARMm 

energy model), but since one of the objectives of my thesis effort is attempting to use a 

secondary objective function when solving for the native state of the protein, additional 

information for a particular empirical method will also be presented (i.e. Schrodinger's 

Equation). 

B.2.3.1 Empirical 

Empirical methods use principles founded in molecular mechanics to describe 

molecular energetics in terms of a set of classical potentials. Molecular mechanics 

models are based on the following assumptions [31]: 
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1) Nuclei and electrons are lumped into atom-like particles considered rigidly 
spherical and having some net charge. 

2) Interactions are based on springs (representing bonds between atoms) and 
classical potentials (representing forces between non-bonded atoms). 

3) Interactions must be pre-assigned to specific sets of atoms. 
4) Interactions determine the spatial distribution of the spherical atoms and their 

energies. 

The objective of these molecular mechanics models is to predict the energy associated 

with a given conformation of a particular molecule. However, these energies have no 

meaning as absolute quantities (i.e., there is no "right" reference energy); only 

differences in energy between two or more conformations of a particular atom have 

meaning [31]. In other words, we cannot conduct a straight comparison between two 

conformations evaluated using different models nor can we adequately compare two 

different molecules using the same energy model. 

B.2.3.1.1 Anatomy of a Molecular Mechanics Force-Field 

A simplified molecular mechanics energy equation is: 

Energy = Stretching Energy + Bending Energy + Torsion Energy + Non- 
Bonded Interaction Energy  

Equation 24: Simplified Semi-Empirical Energy Equation 

These potential functions and the data used for their evaluation are collectively called a 

"force-field" [30]. Separate potential functions are used to calculate bond stretching, 

angle bending, bond twisting energies, and non-bonded interactions. (See Figure 55.) 
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Figure 55: Overview of the Mechanical Molecular Model Forces 

B.2.3.1.1.1 Bond Stretching Energy 

The energy due to bond stretching (Figure 56) is based on Hooke's Law (see 

Equation 25). 

Figure 56: Bond Stretching 

E = I k.   (r - r )i 
bonds b ° 

Equation 25: Bond Stretching 
Energy 

where, Kb controls the stiffness of the bond spring, and r0 defines the equilibrium 
bond length [30]. 

Unique, Kb and rQ parameters are assigned to each type of bonded atom pair (e.g. C-C, 

C-H, O-H, etc.) [31]. The Bond Stretching Energy estimates the energy associated 

with the vibrations about the equilibrium bond length [31]. This model tends to break 

down as the bond is stretched to the point of dissociation. 
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B.2.3.1.1.2 Angle Bending Energy 

Bending energy () is also based on Hooke's Law. (See Equation 26.) 

Equation 26: Angle Bending Energy 

where, K controls the stiffness of the 
angle spring, and 0 defines the 
equilibrium angle [30]. 

Figure 57: Angle Bending 

The angle bending energy equation estimates the energy associated with the 

vibration about the equilibrium bond angle [31]. Unique parameters for angle bending 

are assigned to each type of bonded triplet of atoms (e.g. C-C-C, N-C-C, C-C-H, etc.) 

[31]. The larger the value of "ke," the more energy is required to deform an angle from 

its equilibrium value by a given amount. 

B.2.3.1.1.3 Non-Bonded Energy 

Non-bonded energy represents the pair-wise sum of the energies of all possible 

interacting non-bonded atoms (/and j) within a molecule. This equation accounts for the 

van der Waals attractions and repulsions, as well as electrostatic interactions [31]. Van 

der Waals attractions occur at short ranges between atoms, and rapidly die off as the 

two atoms move apart by just a few angstroms [31]. Repulsion occurs when the 

distance between interacting atoms becomes slightly less than the sum of their contact 

radii [31]. Repulsion counteracts the effects of the van der Waals attraction, and is 

modeled by a function that is specifically designed to rapidly explode at close distances. 

The electrostatic interaction term serves to describe the smooth transition between 

these two regimes [31]. 
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Equation 27: Non-bonded Energy 
Equation 

where, A can be obtained from atomic 
Figure 58: Non-bonded Interaction polarization measurements or quantum 

a mechanical calculations, B is derived 
from crystallographic data of observed 
contact distances between different 
kinds of atoms, and the electrostatic 
term is modeled using a Coulombic 
potential [30]. 

The A and B parameter control the depth and position of the potential energy well for a 

given pair of non-bonded interacting atoms (e.g. C:C, 0:C, 0:H, etc.) [31]. In effect, the 

A term determines the degree of stickiness of the van der Waals attraction, and B 

determines the degree of hardness of the atom (i.e. marshmallow-like, billiard ball-like, 

etc.) [30]. 

B.2.3.1.1.4 Torsion Energy 

Torsion energy is primarily used to correct the remaining energy terms rather 

than to represent a physical process or molecular property [30]. The torsion energy 

equation represents the amount of energy that must be added/subtracted from the 

Bond Stretching Energy + Angle Bending Energy + Non-bonded Energy Equation 

terms to make the total energy agree with experimental or quantum mechanical 

calculations for a model of dihedral angles. 
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E = S A [1 + cos(m - 4>)] 
torsions 

Figure 59: Torsion Energy _      *.„„,..,- 3 Equation 28: Torsion Energy 
Equation 

Unique parameters for torsion rotation are assigned to each type of bonded quartet of 

atoms based upon their types (e.g. C-C-C-C, C-O-N-H, N-C-C-N, etc.) [30]. 

B.2.3.2 Semi-Empirical 

Semi-empirical methods are rooted in quantum chemistry, which describes 

molecular energies in terms of explicit interactions between electrons and nuclei. 

Quantum mechanics methods are based on the following assumptions [33]: 

1) Nuclei and electrons are distinguishable from each other. 
2) Electron-electron and electron-nuclear interactions are explicit. 
3) Interactions are governed by nuclear and electron charges (i.e. potential energy) 

and electron motions (i.e. kinetic energy). 
4) Interactions determine the spatial distribution of nuclei and electrons and their 

energies. 

The theoretical foundation of quantum chemistry starts with de Brogue's [31, 33] 

concept (sub-atomic particles display wave-like properties), but it was Schrodinger that 

made the connection between classical waves and de Brogue's particle waves [33]. 

Schrodinger used the concept of a standing wave to quantitatively describe particle 

waves. The mathematical description of this wave is called a wavefunction. 

Properties of a wavefunction describe the kinetic and potential energies of an 

electron in a region of space surrounding the nucleus. These properties are obtained by 

applying a Hamiltonian operator to the wavefunction. This generates the wavefunction 

(¥) and its corresponding energy (E). Schrodinger's equation (see Equation 29) can 
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be solved for *P and E. Schrodinger's equation addresses "where are the electrons and 

nuclei of a molecule in space?' and "what are their energies?' [33]. 

V2V = -(2n/[h/2m(E-V)1/2])2Y = -(87t2m/h2(E-V)Y 

Equation 29: Schrodinger's Equation 

This can be rearranged by a series of algebraic steps into: 

(-h2/8;r2 m)V2V = (E- V)Y 

(-h2/8*2 m) V2V = EV- -W 

(-h2/to2 m)V2V + W = EV 

[(-h2/8^: 2m)V2 + V]V = = EV 

LetHs [(-h2/8^2m)V: 2+V] 

Equation 30: Reduction of Schrodinger's Equation 

where h is Planck's constant, m is the mass of the electron, V is the Laplacian operator 

~\2 -\2 -\2 

(i.e. V2 = —- + —- + —-), and Vis the potential energy of the electron [34]. 
dx2     dy      dz 

Resulting in the following simplified form, which the Schrodinger's Equation is usually 

represented as: 

HW = EV; 
Equation 31: Simplified Schrodinger's Equation 

where Yis the waveifunction and E is the total energy of the electron. 

Schrodinger's Equation works for hydrogen and hydrogen-like atoms, but when 

two or more electrons are in the atom's valance shell they not only interact with the 

protons in the nucleus, but also other electrons [34]. This equation becomes more 

complex for describing a multi-electron atom due to the electron-electron interactions 

(electron correlation) and an additional property called "electron spin" [33, 34, 35], but 

the effects can be approximated under the assumption that each electron-nuclear 
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interaction is screened by the average of all electrons. This leads to Schrodinger's 

Equation for a molecule: 

electron 

H-K-tf/siAn^iv2! 

i=Lk-l  l=l+l,k 

electron-nucleus 

ZW 
j=l,N     i=l,k 

2 ZJ Z»/Rj.n 
j=l,N-l   rcH+l,N 

\ electron-electron i nuclei d nucleus 
Equation 32: Schrodinger's Equation for a Molecule 

This equation is constructed from a set of one-electron wavefunctions 

contributed by each atom. This approximation technique considers the nuclei to be 

stationary relative to the motions of the electrons [33]. The major difference between 

computational methods that use Schrodinger's Equation as a basis for calculating the 

molecular energies pertains to their consideration of the electron correlation [33]. 

B.2.3.3 Ab Initio 

The difference between Ab Initio methods and empirical methods is that ab initio 

methods use the complete form of the Fock operator to construct the wave equation 

[30]. The decision to use the complete Fock operator makes this form of calculations 

computational impractical except for when dealing with the smallest of molecules. The 

Fock-operator is presented here for completeness (Equation 33) [32]. It is expressed in 

terms of the one-electron Hamiltonian h (equation), the Coulomb operator Ja 

(equation), and the exchange operator Ka (Equation 34). 

/(n) = 
A'/2 

-JM* I)) 

Equation 33: Fock Operator 
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Hn)   =  -lM-Jt 
>t=l 

ljÄ(n)    =    /,^r^(r2)1-^-1^r2) 

J^(ri)^(ri) [y^r^H 
ri-rali 

r^(r2) $«(T1, 

Equation 34: Hamiltonian, Coulomb, and Exchange Operators 

The minimum energy can be calculated using the A//2 spatial orbitals with the lowest 

eigenvalues E,,£2, ... , £N/2. However, the total electronic energy is not just the sum of 

these N/2 eigenvalues. The correct expression for the energy is 

I 1 

Equation 35: Minimum Energy Equation 

where the terms in {) are defined as: 

Vi2  J J |ri -ra|  

Equation 36: Definition of Matrix Elements 

The problem of finding solutions for this time independent Schrodinger equation is now 

reduced to finding solutions of the eigenvalue equation called the "Hartree-Fock" 

equation (Equation 37). 

Equation 37: Hartree-Fock Equation 

The only remaining problem with using Hartree-Fock Equation to solve for the 

conformation state of a protein is that it has an infinite number of solutions [32]. 

Therefore, the next step is to expand the spatial orbitals in a finite set of known basis 

functions: 
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K 

^i ..,K   K>N/2 

Equation 38: Spatial Orbitals 

The orbitals N/2+1... Kare the "unoccupied" two-electron states [32]. The coefficient 

Cßi is unknown and still has to be determined. A straightforward application of this 

expression to the Hartree-Fock Equation leads to a system of algebraic equations 

called the Roothaan Equations: 

FC= SC s 
Equation 39: Roothaan Equations 

All the symbols in this equation are Kx K matrices. The matrix e is a diagonal 

matrix with values £i.. .ei<. The matrix C has the elements C^. The "overlap matrix" (S) 

and the "Fock matrix" (F) have elements defined by 

S^    =     /"dri^trO^rO 

Fp,    =    y'dr1^(r1)/(r1)1Mri; 

Equation 40: Overlap and Fock Matrices 

The expressions for F^ can be expanded, but it still leaves us with the problem of 

solving a system of nonlinear equations. This non-linearity arises because the Fock 

operator depends upon the coefficients C^(F=F(C)). The only possible way to solve this 

equation takes the form of iterating the equations until a solution to Equation 35: 

Minimum Energy Equation does not change within some specified accuracy between 

two successive iterations, but convergence is not guaranteed [32]. The order of 

complexity for this set of equations is determined by the calculation of the two-electron 

1 
integrals U^ 

'12 

(j)v(j)x ), and will generally consume the most processor time because 

of their large number ( 0 
8 

unique integrals) [32]. 

The whole process is summarized as [32]: 

1) Write down the Schrodinger equation for the system. 
2) Use Slater determinant, containing molecular orbitals as the wave function. 
3) Obtain the nonlinear Hartree-Fock equations by us of the variational principle. 
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4) Introduce a finite basis set to obtain the algebraic equations. 
5) Try to solve theses equations using an iterative approach. 

B.3 Summary 

The three computational methods empirical, semi-empirical, and ab initio vary in 

their ability to accurately model a molecule at the atomic level., but other just as 

important properties of these three methods must be considered prior to choosing a 

particular method for inclusion into a computational engine for solving the Protein 

Structure Prediction Problem. The "practical" differences are listed in Table 1. 
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Appendix C: Parallelization Techniques 

Ever since conventional serial computers were invented, their speed has steadily 

increased to match the needs of emerging applications. However, as we approach the 

fundamental physical limitation of a serial computer imposed by the speed of light, it is 

increasingly costly and difficult to achieve further improvements in the speed of a single 

processor computer [37]. Therefore, more and more scientists have turned to parallel 

computers in the hopes for faster execution of computationally intensive applications. 

A major stumbling block in parallel computing is the difficulty in conceptualizing 

parallel approaches to problem solving. People tend to think of problem solutions in a 

sequential fashion, but sequential (serial) solutions to problems rarely transform into 

quality parallel solutions. There are two major concerns when parallelizing any 

algorithm: 

1) Is the parallel algorithm correct? (Effectiveness) 
2) Is the parallel algorithm faster than the serial version? (Efficiency) 

Correctness is an issue because there is greater difficulty in verifying correctness of 

parallel algorithms than sequential algorithms [36, 37]. If we assume the algorithm is 

correctly implemented, then speedup becomes the primary issue and goal of 

parallelization. A trade-off analysis is generally required to determine if the estimated 

benefits warrant the expenditure of resources to parallelize an algorithm. There are 

several different techniques and software utilities that can help us understand 

parallelization trade-offs as we develop parallel applications. 

C.1 Decomposition Techniques 

Data and control decomposition are alternate means to dividing a serial 

algorithm into portions that can be performed simultaneously. In general, data 

decomposition allows for data parallelism, and control decomposition enables a parallel 

programmer to parallelize the control of an algorithm {controlparallelism). In data 

parallelizable algorithms, many data items are subject to identical processing. 

Assigning data elements to various processors, each of which performs identical 

computations on its data, parallelizes such problems [36]. On the other hand, control 

parallelism refers to the simultaneous execution of different instructions. These types of 
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parallelized programs can either be executed on the same data stream or on different 

data streams [36]. In either case (data or control decomposition) the results are 

combined in some fashion to obtain the final solution. 

Genetic algorithms (GA) are highly data parallelizable. Parallelizing a GA is as 

simple as running multiple copies on separate populations (using a different random 

seed) and processors then choosing the best result from all the runs. Data 

parallelization techniques are also amenable to static load balancing because their 

computation and communication patterns are regular [15]. Historically, AFIT has data 

decomposed the Protein Structure Prediction (PSP) problem, but this is not to say 

control parallelism is impossible. 

Several years ago, Charles Brooks and Bill Young developed a heterogeneous 

version of CHARMm (a computational engine used in the search for an answer to PSP 

problem) which tackled the intense computational demands of simulating a protein 

surrounded by water [38]. This approach took advantage of the data parallelism nature 

of the problem (i.e., computations for the water molecules are independent of the 

others) [38]. Their newest implementation of CHARMm is a distributed version 

executing on the CRAY T3D and C90 (coupled). This version has already shown two to 

three times the speed-up over previous implementations, which were hampered by 

communications overhead [38]. Furthermore, this version not only takes advantage of 

data decomposition it also takes advantage of task decomposition by assigning the 

water molecule interactions to the C90 vector supercomputer [38] and using pipelining 

principles. 

C.2 Scheduling Strategies 

Once we have decomposed our algorithm into "manageable" tasks, we have to 

schedule these tasks for execution on a particular computer architecture. This 

scheduling problem boils down to resource allocation decisions consisting of placement 

and assignment. Placement is simply defined as - "where to locate code and data in 

physical memory [43]?" Assignment, on the other hand, tries to answer the question of 

"which processor will execute each task [43]?" There are two general ways to answer 

these questions: static scheduling and dynamic scheduling. 

Static scheduling assigns the tasks to the processors prior to program execution 

using task weights and processing resources. The tasks will always execute on the 
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processor on which they were assigned [43]. Of course, the quest for an "optimum" 

schedule is NP-complete. However, there are several sub-optimal techniques that have 

been shown to work quite well. Alas, static scheduling is not as portable as dynamic 

scheduling nor is it guaranteed to work on the same architecture over time if the 

platform's configuration is unstable. 

Dynamic scheduling, on the other hand, is best when very little prior knowledge 

is available about the resource needs of the tasks and when we are not sure where the 

program will execute during its lifetime. Dynamic schedules are either adaptive or non- 

adaptive. Adaptive schedules change dynamically in response to shifting system 

loading [43]. Non-adaptive schedules do not. Even though they support greater 

portability across architecture platforms, there is an associated cost. Dynamic 

scheduling entails execution time overhead cost(s) for determining the schedule. A 

trade-off analysis is called for to determine which scheduling strategy would be best for 

any particular algorithm instantiation. 

C.3 Load Balancing 

Load balance goes hand in hand with scheduling strategies. In load balancing, 

we are trying to distribute the workload from the heavily loaded processors to the lightly 

loaded processors with the purpose of improving the overall performance of the system 

[43]. Load balancing algorithms consist of three components: information policy, 

transfer policy, and placement policy. The information policy specifies the amount of 

load and task information made available to the task placement decision maker(s) and 

the way this information is distributed [43]. In short, we are answering the question of 

"how do we know the task load has become unbalanced?' The second component 

determines the suitability of a job for load transferring. The transfer policy is trying to 

answer the question of "which task will we transfer?' It is usually based on the load of 

the host processor and the size of the task [43]. The third and final component - the 

placement policy - answers the question of "where do we put the transferring task?' 

There are many placement schemes (e.g., round robin, closest neighbor, least loaded, 

etc.). 

Load balancing can either be accomplished prior to program execution - static 

load balancing - or during program execution - dynamic load balancing. There are 

many ways to accomplish either static load balancing or dynamic load balancing. A 
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trade-off analysis should be accomplished to determine which strategy best suits your 

program and target architecture. Static load balancing tends to be easier to implement 

(if enough information is available a priori), and in some cases it can achieve an 

"optimal" balancing. On the other hand, dynamic load balancing performs better when 

the characteristics of the program or the topology of the target computer architecture 

change significantly over time in a way we cannot easily predicate, but we will pay an 

overhead price for dynamically balancing the program load. Appendix D looks at those 

scheduling and load balancing schemes we have analyzed for the problem-algorithm 

integration. 

C.4 Introduction to UNITY 

Chandy and Misra proposed an architecture independent method for the 

description of an algorithm - UNITY (Unbounded Nondeterministic Iteractive 

Transformations) [39]. A UNITYspecification describes the requirements for a process 

not the "how" of the process [39]. The UNITY approach embodies three important 

concepts: 

1) high-level, explicit expression of parallelism, 
2) extrication of proofs from the basic program design, and 
3) mapping of the initial design to a specific parallel architecture while maintaining 

correctness. 

C.4.1 Explicit Expression of Parallelism 

The UNITY approach isolates the program designer from the specifics of a given 

parallel architecture. The resulting description is strong on "what," and says practically 

nothing about "when" or "how" [39]. Design decisions forced by the target architecture 

are postponed until late in the design process. This approach helps the designer extract 

all the inherent parallelism of an algorithm and to implicitly define decomposition options 

[39]. A high-level UNITY specification is written as a series of assignment statements 

capable of being executed in parallel. Using this product, the designer can then 

examine in detail the complexity of each independent piece of the program. 

Table 37 discusses the principles which form the basis of parallelism within a 

UNITY design [39]: 
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Non-Determinism - A UNITY specification is a set of executable 
assignment statements, and under this concept each statement is executed 
infinitely often (The Fairness Rule). 

Absence of Control Flow - UNITY specifications do not specify control 
flow. Divorcing control flow from program construction allows for greater 
flexibility in mappings to different parallel architecture. 

Synchrony and Asynchrony - The UNITY language supports synchronous 
and asynchronous assignment of variables. 

States and Assignments - All UNITY specifications are composed entirely 
of states and assignments. Progression from state-to-state takes place 
through parallel or sequential assignment of variables. This principle 
supports the extraction of proofs from UNITY specifications.  

Table 37: Principles of UNITY 

C.4.2 Extraction of Proofs 

Using a combination of standard logic operators and special temporal logic 

operators, a proof of program correctness is extracted from the high-level UNITY 

specification. This is the power of the UNITY design approach. This is a great step 

forward in answering the first question proposed earlier (Section Error! Reference 

source not found.): Is the parallel algorithm correct? The ease of proving the UNITY 

design depends on how well the design is written and the level of detail it contains. 

Typically, the UNITY design proof proceeds in the following manner [39]: 

1) Define and prove the existence of an Invariant (something that is always true 
about the design throughout its execution). 

2) Define and prove the existence of a Fix Point. The Fix Point is the stopping 

3) Define a progress property and show the progress property holds until the fix 
point is reached. 

Table 38: Steps to a UNITY Proof 

C.4.3 Mapping of the Initial Design 

The UNITY approach provides for a means of transforming a high-level 

specifications into an intermediate forms using correctness-preserving mappings [39]. 

The intermediate form provides a structure for developing an implementations on a 
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specific parallel architectures, whether it is sequential, asynchronous shared-memory, or 

distributed, while maintaining the programs correctness. Source code for the 

executable program can be written based loosely on the intermediate form [39]. The 

description of the mappings describes "how" the UNITY program is executed on the 

target machine. Mappings for particular classes of architectures exhibit common 

characteristics [14]. 

Chandy and Misra provide the following mapping strategies for asynchronous 

shared-memory architectures (Table 39), distributed architectures (Table 40), and 

synchronous architectures (Table 41) [40]: 

The mapping strategy of a UNITY design to asynchronous shared-memory 
architectures is as follows: 

1) Allocates each statement in the program to a processor, 

2) Allocates each variable to a memory location, and 

3) Specifies the control flow for each processor. 

And this mapping must satisfy the following constraints: 

■ All variables on the left side of each statement allocated to a processor are in 
memory that can be written to by the processor, and all variables on the right 
side are in memories that can be read by the processor. 

•    The control flow for each processor is such that every statement allocated to 
the processor is executed infinitely often.  

Table 39: Mapping to Asynchronous Shared-Memory Architectures 
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The mapping strategy of a UNITY design to distributed architectures is the 
same as for asynchronous shared-memory architectures except: 

1)  Each variable is allocated either to the local memory of a processor or to a 

The mapping must satisfy the following constraints in addition to the constraints 
of the shared-memory case: 

• At most one variable is allocated to each channel, and this variable is of type 

• A variable allocated to a channel is named in statements of exactly two 
processors, and these statements are of the following form: The statements 
in one of the processors modify the variable by appending an item of data 
(the message) to the rear of the sequence, if the size of the sequence does 
not exceed the buffer size; statements in the other processor modify the 
variable by deleting the items at the head of the sequence, if the sequence is 
not null. The variable is not accessed in any other way. 

Table 40: Mapping to Distributed Systems 

In general, mapping a UNITY design to synchronous architectures is complex. 
Therefore, I will restrict this discussion to what the mapping should consist of: 

• A description of how the operations in each statement are to be executed by 
the processors, 

• An allocation of each variable to the memory, and 
• A specification of a single flow of control, common to all processors. 

And this mapping must satisfy the following constraints: 

• The manner in which processors execute a statement is consistent with the 
allocation of the variables to memories. 

• The flow of control must be such that each statement is executed infinitely 

Table 41: Mapping to Synchronous Architectures 
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Appendix D: Decomposition of the PSP Problems 

D.1 Decomposition of PSP Problem 

Many different genetic algorithms have been used to manipulate the search 

space in AFIT's continual efforts to find the global optimum conformational energy for 

general proteins. We have added to these approaches by incorporating the problem 

domain into the Linkage Learning GA (LLGA) developed by Harik [7] and incorporating 

the CHARMm energy model [41, 42] as their primary fitness functions. The LLGA's 

pseudo-algorithm is in CHAPTER 3. LLGA's processes are broken into the tasks 

identified in Table 42. 

Task                                                                                 Average 
Number    Description                                                        Execution Time    Workload 
1 Initialization - creation of initial population 4 4 
2 Fitness Evaluation - CHARMm 5 5 
3 Tournament Selection 2 2 
4    ' Exchange Operation 3 3 
5 Stopping Condition - determines if objective 

is reached and records final most fit individual 
1 1 

Table 42: LLGA Task Decomposition 

We have ranled the task with respect to average execution time and workload (1 being 

the lowest value and 5 is the highest). 

Since, we are primarily comparing the LLGA to the fast messy GA (fmGA) in 

CHAPTER 5 and CHAPTER 6, we have presented the corresponding task 

decomposition in Table 43. The pseudo-algorithm is in CHAPTER 3. 
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Task                                                                                   Average 
Number          Description                                                   Execution Time    Workload 
1 PEI - creation of initial population 7 8 
2 Fitness Evaluation - CHARMM 8 8 
3 Tournament Selection 4 5 
4 Reduce Population Size 5 4 
5 Primordial Phase Stopping Condition - 

record population 
3 3 

6 Cut-And-Splice 6 7 
7»«74   Juxtapositional Stopping Condition - 

determines if objective is reached and 
records Klh-order Template 

2 2 

8 Stopping Condition - determines if 
objective is reached and records final most 
fit individual 

1 1 

Table 43: mGA Task Decomposition 

Both of these decompositions (Table 42 and Table 43) lead to data decomposed 

solutions. An alternative method towards decomposing this problem leads to 

parallelization of the CHARMm energy model (i.e., a task decomposition model). The 

decomposition of the CHARMm energy model as implemented at AFIT follows (see 

SECTION): 

Task Number Description Average Execution Time Workload 
1 Bond Energy 6.00e-6 sec 2 
2 Angle Energy 5,O0e-6 sec 3 
3 Torsion Potential 1.04e-3 5 
4 Improper Torsion too small to measure 4 
5 Lennard-Jones Equation 2,33e-2 sec G 
6 Energy Constant too small to measure 1 

Table 44: CHARMM Decomposition 

In order to implement the decomposition presented in Table 44, it would require 

passing a message containing the complete molecule layout to each subtask in order for 

them to compute the total energy. The size of this message is approximately 240 bits 

(representing the protein [Met]-Enkephalin) plus 4,700 bits (molecule layout represented 

in a PDB file). Therefore, this model of parallelization was not implemented nor will it be 

discussed further. 

741 have combined the stopping condition check with saving the kl -order template. 
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D.2 Scheduling and Load Balancing of the GAs 

Just looking at the benefits of the LLGA and fmGA decomposition schemes 

presented in Figure 60 and Figure 61, we can tell that little parallelization is possible 

since each processor must communicate its results to the next processors. 

Loop 

Simple LLGA Decomposition 

Figure 60: Direct LLGA Task Decomposition Schedule 

Climbing Deception Latter Loop 

Primordial Phase Loop Juxtapositional Phase Loop 

(   T1    VW    T2    j-V    T3   \-*(   T4    j—►/   T5    j-*/   T6    Y-U   T2'   Y-U   T3'   Y-U   T7    Y-U   T8    J 

Simple mGA Decomposition 

Figure 61: Direct fmGA Task Decomposition Schedule 

The best possible scheme may come from combining tasks onto single processor, 

which would cut the communication overhead considerably and more evenly distribute 

the workload. This sort of scheduling follows from Zhu's workload scheduling [43]. In 

Zhu's algorithm, the scheduling is accomplished by computing the workload associated 

with each level of a directed acyclic graph (DAG) starting with the source node. Neither 

of the above graph is a DAG. We have chosen to ignore this constraint for the time 

being because we could unfolded the cycles in each of the above graphs by simply 

duplicating the looped tasks an "appropriate" number of times (i.e., analagosly to 

compiler "loop-unrolling"). The next step involves determining whether a task should be 

aggregated with its predecessor or whether it should be parallelized (see Figure 62 and 

Figure 63 for result of aggregation). Once we have developed this new set of DAGs, 

we can compute the workload for each processor, and once we have aggregated these 

workload values up the DAG, we can determine the final schedule for completing the 
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task. The DAGs indicate a compression of communication and computation and a 

possible final task scheduling scheme for these GAs. 

When developing the new DAG for the fmGA (Figure 63) and LLGA (Figure 62), 

we considered the expected execution time and workload aggregated as a single 

component. In order to represent this, we assumed that each ordinal unit represents a 

single time unit. For example, if we looked at task 1 defined in Table 42, we see task 1 

defined as having 2 for expected execution time and 2 for workload. Therefore, the task 

would have a computation value of 4. The communication times for each task are 

based on the amount of data each task receives from the preceding processor and 

sends to the next processor. The sizes of the messages are based on the size of the 

population. Therefore, in the DAGs, we have indicated the portion of the population 

needing to be passed to the next processor. If the whole population needs passing, I 

have indicated this with a "p." 

Loop 

/separate'-message for 
population 

& 
*\   10/p J 

Loop 

Figure 62: Zhu's Scheduling for LLGA 
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Climbing Deception Latter Loop 

Primordial Phase Loop Juxtapositional Phase Loop 

Climbing Deception Latter Loop 

Figure 63: Zhu's Scheduling for fmGA 

An alternative method for parallelizing the GA thatwe felt it was important to 

investigate is Kruatrachue-Lewis' Duplicate scheduling [43]. The basic idea is to 

duplicate task to reduce communication delays, at the cost of increasing the space 

complexity and total computation of the program. This paradigm is similar to the 

"Farming Model" or "Island Model" presented by Gates [15] and Kaiser [37]. This sort of 

scheduling strategy leads to the following DAGs (see Figure 65 and Figure 64). We've 

based the task duplication on the same computation and communications estimates 

developed for Zhu's algorithm. 
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separate message for 
population 

separate message for 
population 

Figure 64: Kruatrachue-Lewis' Duplicate Scheduling for LLGA 
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Figure 65: Kruatrachue-Lewis' Duplicate Scheduling for mGA 
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D.3 Scheduling and Load Balancing of CHARMm 

Turning our attention to the decomposition of CHARMm, we again see little gains 

by blindly parallelizing the equation across several processors, but after applying the two 

aforementioned scheduling schemes we can see appreciable performance 

improvements. Even though the calculated gain is not significant for the small molecule 

trial figures, we argue that by parallelizing the CHARMm model, we will see huge 

dividends when we attempt to "CHARMM-menize" a much larger protein. 

[   Distribut   \ 
I        or        ) 

& e 
Figure A 

e •© (T1) (T2) (    T3    )      (   T4    ) 

Gather 

Figure B 

(  T5   ) (   T6   ) 

Figure 66: Two Simple Parallelizations of CHARMM 

First let us look at Figure 66. This figure presents two distinct ways to graph 

CHARMm as a DAG. In both figures, we have scheduled each task on separate 

processors, but Figure B affords us a greater possibility for parallelization. Figure A is 

a linear pipeline model in which the intent is to pass a single chromosome through at a 

time in the hopes of achieving some speed-up. This model may achieve some speed- 

up over "normal, non-decomposed" CHARMm, but it has a serious bottleneck at Task 5 

(T5) that severely hampers the potential gain. The bottleneck is similar to float-point 

division bottleneck found in CPU design (i.e., the fastest the Figure A CHARMm 

pipeline can go is determined by the Lennard-Jones Equation). On the other hand, 

Figure B circumvents this problem by allowing out-of-order completion of each 

chromosome's fitness evaluation even though we have the added overhead of 

distribution and gather of the final answer. Out-of-order completion could be 

implemented by allowing the "gather process" to know a priori the population size and 

implementing an in order traversal for distributing the population. This way the gather 

progress would understand that the first message received by any particular task would 
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belong to the first member of the population and so on and so forth (i.e., the second 

message from the same task would go to the second member of the population). 

At this time, we should emphasize the serious shortcoming to any decomposition 

of CHARMm: the required message size. The message size is a limiting factor because 

for a relative small protein model (for instance [Met]-Enkephalin) the file size is 

approximately 4,700 bits which would need to accompany each chromosome through 

the CHARMm calculation process. We propose a simple yet elegant method to get 

around this bottleneck. The file is static; it never changes. Therefore, we could have 

each processor load the file as part of its initialization while the other tasks of the GA are 

accomplishing their work. Therefore, the message size would be reduced to the length 

of the chromosome plus the length of the energy result. 

Zhu's scheduling for CHARMm is in Figure 67. 
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Figure 67; Zhu's CHARMM Schedule 

Figure A provides the overall greatest return because it is not hampered by have 

the Distributor or Gather processes of Figure B which are overhead. 

Kruatrachue-Lewis' Duplicate scheduling scheme produces the DAGs found in 

Figure 68 which show that again the linear pipeline looks as if it will provide the greatest 

improvement because it does not have the additional overhead. 
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Figure A Figure B 

Figure 68: Krutrachue-Lewis' CHARMM Schedule 

D.4 Summary 

In this appendix, we have investigated several different possiblities for 

parallelizing the LLGA and the CHARMm energy model in order to determine which 

methodology produces the greatest speed-up. CHARMm requires an average 1.09 

seconds to evaluate each chromosome. Thus, a 50 chromosome population, the worst 

case execution time for CHARMm is 54.50 seconds per generation. On the other hand, 

the LLGA requires approximately 4.5 seconds of processing per generation. Therefore, 

we follow Kruatrachue-Lewis' Duplicate scheduling scheme for our parallelization 

methodology where we will be parallelizing the fitness evaluations. 
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Appendix E: Additional LIGA Structure 

E.1 Messy Genetic Algorithm (mGA) 

The mGA proposed by Goldberg era/., in 1989, was a major paradigm shift for 

its time. The mGA was the first to suggest moving from "neat coding and operators" to 

allowing variable-length strings that may be under- or over-specified with respects to the 

problem being solved [1]. The original mGA was designed to handle the "deception 

problem." Goldberg's originally proposed mGA was fashioned from his view that 

nature's climb out of the primordium occurred with genotypes that exhibit redundancy, 

over-specification, under-specification, changing length, and changing structure [1]. 

E.1 a mGA Chromosome Representation: Positional Precedence 

Positional precedence may also permit the formation of a kind of intra- 

chromosomal dominance operator [1]. This intra-chromosomal dominance operator was 

not used in the original mGA, but the concept is useful in large allelic alphabets. It 

allows the mGA user to pre-specify some precedence relationship amongst the allele 

values. Then, as the mGA handled over-specification, it takes into account these 

precedences [1]. Figure 69 illustrates how the intra-chromosomal dominance operator 

works. 

Inter-Chromosomal 
Dominance Operator^ 

I (M)  | (2,2) | (1,1) | (0,3) | (0,1)  | K             | (2,2)  | (0,3)  | (0,1)  | 

Chromosome Used in Fitness 
Evaluation Original Chromosome 

'               V 

Figure 69: mGA's Inter-Chromosomal Dominance Operator 

If the allelic alphabet is [0, 1, *] with the inter-chromosomal precedence [1st, 2nd, 3rd] 

respectively, then the inter-chromosomal dominance operator would skip the (*, 1) and 

(1,1) alleles and use the (0,1) allele value in the final chromosome representation sent 

to the fitness function. 

E.1b mGA Chromosome Representation: the Competitive Template 

The key to this notion of using locally optimal template is salient building blocks. 

If the relative rankings of the best building block and the other building blocks are 
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preserved using a template, and as long as the other building blocks have a template 

fitness that is less than or equal to that of the lowest locally optimal point, then selection 

is expected to yield building blocks that are at least as good as the lowest locally optimal 

point [1]. Therefore, only salient building blocks obtain fitness values better than the 

template value [2], and according to the Schema Theorem, their representation should 

increase within the population. The "trick" to using a competitive template is its 

generation, (i.e., how can a locally optimal template be generated without the prior 

knowledge of the fitness landscape?) In his original discussion, Goldberg made a 

couple of suggestions using mathematical criteria such as linear local optimization 

techniques, as well as preprocessing the problem domain in SGA and using the 

returned "best" chromosome as a basis for the template [1 ]. 

In later papers covering the mGA, Goldberg suggests the template generation 

method most commonly used today - climbing the-ladder-of-deception [2]. This concept 

can be best explained as solving an order-k deceptive problem by first solving it to 

order-(k-l) optimality and then finding the necessary order-k improvements to that 

solution [3]. Therefore, most mGA implementations have what is called an "outer-loop" 

that increments the order of the deception the mGA is trying to combat (see Algorithm 

1). For example, by starting at the k = 1 level, a 1st-order optimal template can be 

found, which in turn can be used in solving for the k = 2 template, and so on until the kth- 

order of deception that characterizes the problem domain in question is accomplished 

[2]. 

E.1c mGA Algorithmic Phases: partially enumerative initialization (PEI) 

The building blocks created for in PEI are an exhaustive list of allele 

combinations of length equal to the estimated build block size or nonlinearity of the 

problem domain [14]. If the building block size is greater than or equal to the level of 

deception present in the problem, the PEI phase guarantees that all building blocks 

necessary to form the globally optimal solution are represented in the initial population 

[14]. This results in the mGA's PEI population size being governed by Equation 41 [1]. 
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./! \l\ 

iv/iere, k is the order of the building block, 
C is the cardinality of the alphabet, 

/"/'s the string length, and 
{ n 

■■1| 
genes. 

is the number of combinations of k 

Equation 41 : PEI Population Equation 

This leads to rather large populations quickly. Figure 70 indicates the rapid 

population growth rate required in PEI for a chromosome length of 240 binary alleles. 

Specifically, the number of building blocks required in the PEI phase for this 

chromosome assuming a 3rd-order deception problem is: 

Using Equation 41:  n = Ck ^ 

V ) 
1 = 240 
k = 3 
C = 2 

Therefore, 

(chromosome length) 
(3rd-order deception problem) 
(binary allelic alphabet) 

n = T 
240 

n = 8(2275280) 
n = 18,202,240 initial building blocks (indicated on Figure 70) 
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Figure 70: Population Growth Rate for the mGA 

E.1d mGA Algorithmic Phases: Cut-and-Splice 

Cut-and-splice can be thought of a simple one-point crossover operating on 

variable length strings. But, this operator was specifically designed to handle variable- 

length as well as over-specified and under-specified chromosomes [1]. A "cut" is 

performed first on each of two individual chromosomes, randomly chosen from the 

population, using a specified bitwise cut probability (pk) [1,16]. The overall cut 

probability for each individual is governed by Equation 42 where X, is the current length 

of the string and pc is subject to the limit pc < 1. 
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l\ =pt(A-1i 

Equation 42: Cut Probability 

Thereafter, the cut operator cuts an individual at a position chosen uniformly at random 

along its length [1] if a "cut" is dictated. 

The "slice" operator concatenates the cut portions of the mating individuals in 

order to produce new population members. The cut chromosomes are recombined with 

a specified slice probability (ps). Dymek [48] observed that there are four possible 

outcomes from the cut operator: 1) neither chromosome is cut, 2) only the first 

chromosome is cut, 3) only the second chromosome is cut, or 4) both chromosomes are 

cut. From these "cut cases," Goldberg's splice operator systematically checks the 

possibility of splicing only successive pairs [1], while Dymek points out that more 

complex manipulations of the cut chromosomes are possible if we don't limit the splice 

operator to just successive pairs [16]. Figure 71 illustrates Goldberg's view of the cut- 

and-splice. 

Dymek's view, although feasible, has not been implemented. His view of the cut- 

and-splice operator would add more splice possibilities to each case. (See Table 45) 

CASE                  Goldberg         Dymerk 
1 2 3 
2 3 7 
3 3 7 
4 5 13 

Total Possibilities 13 31 

Table 45 : Cut-and-Splice Combination Possibilities 
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I « i 

■ Cut Locations 

Two individuals are first choosen randomly from the population 

Case 1: No Cuts Case 2: Only the first is cut      Case 3: Only the second is cut Case 4: Both cut 

I ' I 

Next, the cut operator is called for each individual, the possible substrings could be. 

Case 1: No Cuts 
(2 Possible Outcomes) 

1) No Splice 

Case 2: Only the first is cut 
(3 Possible Outcomes) 

1) No Splice 

2) Splice Occurs 
I r 

3) 2 & (3,4) are spliced 

I 1 I 

Case 3: Only the second is cut 
(3 Possible Outcomes) 

1) No Splice 1) No Splice 

I ' I 

Case 4: Both cut 
(5 Possible outcomes) 

3) 2 & 3 are spliced 

[ZTT       I 

2) (1,2) &3 are spliced 
I i      ~W^M 

2) 1 & 2 are spliced 
I      r  

3) 3 & 4 are spliced 

4) 3 & 4 are spliced 

I      r 

5) 1&2 and 3 &4 are spliced 

Finally, the possibility of splicing is checked on successive pairs 

Figure 71: Cut-and-Splice in a Nutshell 

E.2 Selfish Gene Genetic Algorithm (SG GA) 

The SG GA proposed by Corno, Reorda and Squillero (1998) follows a 

somewhat nontraditional view of evolution. The SG GA follows a recently proposed view 

of evolution where the fundamental unit of natural selection is the gene rather than the 

individual. The selfish gene theory of evolution, proposed by Richard Dawkins in 1976, 

claims that the individual does not survive, but the genome of the individual is able to 
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replicate itself into subsequent generations [4]. In the selfish gene concept of evolution, 

individual genes strive for appearance in the genotype of the individuals, whereas the 

individual is nothing more than a vehicle allowing the genes to reproduce. Due to the 

shuffling of genes that takes place during sexual reproduction, "good" genes (i.e., good 

building blocks) are viewed as those genes that, when combined with other genes, give 

higher reproduction probabilities to the offspring [4]. Thus, such genes have a higher 

probability to spread in the gene pool and therefore receive greater representation in 

future generations. 

E.2a SG GA Chromosome Representation: Virtual Gene Pool Growth Rate 

The rate at which the size of the virtual gene pool increases is much less than 

the growth rate found in the mGA (see Figure 72). The growth rate of the SG GA is 

based on the length of the chromosome (i.e. the number of loci) and the allelic alphabet 

(i.e. the alphabet of values any loci can assume) for each locus. While the allelic 

alphabet need not be the same for each locus, the graph assumes a binary allelic 

alphabet for each locus. 
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Figure 72: Population Growth Rate for the SG GA 

E.2b SG GA Algorithmic Phases: Mutation 

The probability of a mutation (Pm) partially controls the rate of convergence of 

the SG GA. If Pm is set too high, mutants can invade the population and either cause a 

convergence to a suboptimal point in the landscape or cause enough variation within the 

allele marginal probability vector to hinder convergence. On the other hand, if Pm is set 

too low, the alleles converge rapidly to the first optimal solution found by the SG GA. 

For example, if we view the search space in only two-dimensional space, the SG 

GA is traversing a mountain range represented as a line graph. The suboptimal 

solutions are any locally maximal points that are not the maximum. (See Figure 73.) 

(Reverse this analogy for a minimization problem.) 
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Figure 73: 2D Fitness Landscape 

E.2c SG GA Algorithmic Phases: Allele Frequencies and Epsilon (e) 

The value of e determines the extent of the positive/negative feedback in the 

system, and therefore, the balance between a fast convergence towards a local 

optimum and a broader exploration of the search space [4]. To understand how this 

feedback is triggered, consider an allele ai2
75that produces a better fitness for the 

individual when allele a23 is also expressed. If allele a23 increases its frequency, then 

the individuals with allele a12 becomes more likely to win tournaments. This causes 

allele ai2 to also increase its frequency. This feedback mechanism quickly drives the 

virtual population towards a locally optimal solution that includes both allele ai2 and a23. 

The convergence speed of the SG can be tuned using this concept [4]. A large e drives 

the virtual population towards the first local optimal it finds, while a very small value for s 

makes the VP float for a longer time before converging to on a particular local optimum. 

E.3 Gene Expression Messy Genetic Algorithm (GEMGA) 

The gene expression messy genetic algorithm (GEMGA) is another compelling 

investigation into the linkages between genes as proposed by Kargupta in 1996. 

GEMGA's foundation is rooted in an alternate perspective of blackbox optimization 

75 Allele representation: aiv => a = allele, I = locus, v = value 
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(BBO) in terms of relations, classes, and partial ordering which Kargupta coins as 

SEARCH (Search Envisioned As Relation and Class Hierarchizing) [9, 10,11, 45]. 

E.3a Chromosome Representation: Gene Representation 

Each gene representation in GEMGA contains three values: the locus, allele, 

and weight [9]. The locus and allele follow the traditional definitions and are used to 

guarantee positional independence of the gene within the chromosome. The weight, as 

it corresponds to a gene characteristic, was initially used to explicitly evaluate the 

relation space [9], but this gene characteristic has evolved. In 1997, Kargupta changed 

the weight's role to that of modeling the class space [45]. Then, in the most current 

version of GEMGA (1998), the weight characteristic of a gene has changed names and 

roles [10]. It is now called a capacity, and it represents the possibility of change for that 

particular gene. Therefore, it no longer models the class space. This gene 

characteristic still requires a positive real value lower bounded by zero [9, 11, and 45]. 

The capacity of a gene is determined by the transcription operator, and will be further 

explained in Section 3.4.2. 

E.3b Algorithmic Phases: Initialization 

We can estimate the size of the population required to investigate order-k 

relationships between genes by varying c in order to model different fitness variances 

among the initial population. Based upon Equation 18, Figure 74 estimates the size of 

the initial population required if we are looking for 3rd-order linkages with varying c-value 

and increasing n until the 3rd-order problem is solvable. The increasing c-value indicates 

more fitness variance in the initial population. As with previous graphs, Figure 74 

assumes a binary allelic alphabet. Figure 74 indicates that as the c-value increases the 

size of the population must increase by a factor of eight, but since the c-value 

represents the fitness variation amongst the population members there is no a priori 

method of determining the initial population size. Therefore, if our search landscape 

contains extremely high fitness values (1x10100) and extremely low fitness values (- 

1x10100), GEMGA may be unable to find the optimum without enumerating most of the 

landscape in the initial population. 
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Figure 74: GEMGA Population Growth vs. Increasing Initial Variance 

E.3c Algorithmic Phases: RecombinationExpression 

The RecombinationExpression phase of GEMGA begins with the "modified" 

population. The RecombinationExpression stage is actually two separate subphases: 

PreRecombinationExpression and RecombinationExpression. The 

RecombinationExpression phase repeatedly applies these two subphase until some 

predefined stopping condition is met. 

The first subphase is the application of the PreRecombinationExpression 

operator. During this subphase, the PreRecombinationExpression operator is applied to 

the population to determine the clusters of genes precisely defining the relations among 
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those instances of genes considered [10]. For example, two chromosomes are 

randomly selected from the population. One is arbitrarily designated as dominant76. 

The linkage set of the dominant individual is compared to the genes from the other 

chromosome. If the dominant chromosome linkage set members are contained within 

the other chromosome and they have the same value and capacity, then they are 

grouped and extracted as a set. In the linkage set of the dominant chromosome, each 

gene has its weight incremented by a predefined amount (i.e. an algorithm parameter) 

[10]. If this new linkage set is not already included as a linkage set of the recessive 

chromosome, it is included as a new linkage set and the different factors are initialized 

as discussed in the transcription operator. 

After a prespecified number of trials (i.e. another algorithm parameter), a Ixl 

conditional probability matrix is formed. The matrix entries indicate the probability of 

linkage between two genes [10]. Finally, the maximum value for each row of the matrix 

is computed. The genes within some predetermined e of the maximum are retained as 

the linkage set for each gene row, and the weight is set to the average value of the 

entire matrix. This operator is only applied in the first generation and the linkages are 

never recalculated [10]. 

In the second phase of the RecombinationExpression stage, the GEMGA 

Recombination operator is applied. This operator implements crossover and 

reproduction/selection in GEMGA. First two random chromosomes are selected from 

the population, and each is copied (i.e. A to A', B to B'). One of the selected 

chromosomes is chosen as the donor of genetic material (A'). An element of the A' 

linkage set is transferred to B' based on a linearly combined factor of its weight and 

goodness. The transfer of corresponding genes between the two chromosomes (A' and 

B') is based on whether or not the goodness values of the disrupted linkage set for B' 

are less than that for A'. 

Once the linkage sets of the two offspring are adjusted, they undergo a fitness 

evaluation. Furthermore, depending on whether the fitness of B' is decreased or not, 

the goodness of the selected linkage set from A' is either increased or decreased [10]. 

The product of this operator is four unique chromosomes (e.g., 2 parents and 2 

76 The dominant chromosome is arbitrarily chosen from the two chromosomes. 
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children). Based on the fitness of the four individuals, two chromosomes with the best 

fitnesses are returned to the population. 

E.4 Linkage Learning Genetic Algorithm (LLGA) 

The LLGA was first proposed as a new linkage investigating algorithm by Harik 

in 1996. Harik argues that other implementations of genetic algorithms do not take 

explicit advantage of "tight linkages" early enough in their algorithmic processing. If they 

did (as does the LLGA), then they would be able to solve "difficult problems [7]." The 

LLGA takes advantage of tight linkages between genes by using a new two-point 

crossover operator and a different chromosome representation. 

E.4a LLGA Algorithmic Phases: Exchange Operator 

The follow figure illustrates the LLGA's exchange operator. 
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E.4b LLGA Algorithmic Phases: Preconvergence Avoidance and Introns 

In order to avoid preconvergence, the LLGA requires an "exponentially larger 

number of introns encoded" into the chromosome to facilitate the Schema Theorem [7, 

17]. Basically, the LLGA is trying to force linkages within building blocks to become 

shorter in the classical sense while counter-acting the disruptive affects of crossover. 

Historically, a mutation operator battles the GA's tendency to preconverge by 

"reseeding" the population by mutating genes within some number of chromosomes. It 

is implicitly assumed that the mutated chromosomes represent previously unseen terrain 

of the search space. This enables the GA to escape local minima. Since a single 

chromosome in the LLGA population represents the complete search space, mutation, 

in the classical sense, would not make sense77. Therefore, the number of introns coded 

into the chromosome a priori plays a major role in assuring that the LLGA adequately 

searches the landscape before converging to a particular minima. The number of 

introns required in the chromosome is a function of how disruptive the crossover 

operator is encouraged to be, as well as the number of exons. Equation 43 

mathematically represent this notation expressed as a probability (P) that crossover is 

disruptive. 

number of exons 
/> = I 

(number of exonsj + (number of introns) 

Equation 43: Introns Required per X Exons 

Typically, the smaller the value of P the more likely it is that building blocks are 

preserved. Crossover always is disruptive when P = 1. 

This occurs when there are no introns. If we relate Equation 43 to a 

chromosome which has 240 exons, and we desire crossover to be disruptive only 0.01 % 

of the time, then, 

77 The classical mutation operator would actually remove alleles from the population instead of 
reintroducing them. On the other hand, a LLGA mutation operator could be constructed, but 
instead of mutating allelic values, it should mutate the interpretation point. This would allow 
previously unexpressed genes to surface. 

170 



0.01 
240 

240+ (number of introns) 

0.01(240+ (number of introns)) =240 

2.4 + 0.01(number of introns)     =240 

number of introns = 23,760 

Figure 76 indicates how quickly the number of introns must grow in order to 

counteract the effects of disruption. 

30000 

25000 

20000 

o 15000 J 
0) 

£ 
3 z 

10000 - 

5000 

Introns Requirement For 240 Exons 

0.05 

»136Q    . I« 000 ; 

0.1 0.15 0.2 

Disruptive Capabilities of Crossover 

-^»720 

0.25 0.3 

Figure 76: Intron Requirement Trend 

171 



Appendix F: Software Locations 

F.1 Source Code 

The source code corresponding to these implementations is found on the AFIT 

Parallel and Distributed Lab Network-of-Workstations (NOW) room 243 building 640 

under the following directory: 

-genetic/Software/ 

This directory is composed of the following subdirectories and a short description of their 

contents is provided: 

♦   Linkage_Learning 

♦ /original: contains the original untampered Linkage Learning genetic algorithm 
(LLGA) source code. 

♦ /sllga: contains the modified LLGA-Protein Structure Prediction (PSP) source 
code. 

♦ /pllga: contains the modified parallel LLGA- PSP source code. 
♦ /constrained_charmm: contains the modified CHARMm source code. 

F.2 Input and Output Files 

Gualke developed a good description of the required input files for the PSP 

calculations and the basic set of output files AFIT GAs produce [73]. The reader is 

referred to his thesis for their coverage. NOTE: THE RTF (MOLECULE TOPOLOGY 

FILE) FILE AND THE PARM.PRM (PARAMETER FILE) NEED TO COME FORM THE 

SAME QUANTA VERSION. IF THE DON'T, THE AFIT TOOLBOX IMPLEMENTATION 

WILL EITHER HANG OR RETURN ERRONEOUS RESULTS. The LLGA requires a 

single input file in the following form: 
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<•' iiipMlfitel' ci sample mpul fik: lurthi' LLTiA 
# Thii ii the 1" i:\ponL'ntially «ruled HH pioblcm that i« ücm.nlicit 
it   in Gooiyi:« Hank'« the«.!« (pp Hl> 9u). 
H   Kadi HU K a 4-bit Irap tundi.in 
# Thii «igiul K 0.4 (global is I. «k-icpuve i* 0 ö). 
# 7lie BHs nie scaled b> si f.«.Ii« of ? 

^building hlncks 
# I -1<J: lew Jt high Uli - moan« :til BB will IM tt-«icJ Using "n.ip' 
»   ir.ip . oh|CLlive luncnon 

# 0.4 : signal 

'cchiint: gi-iit:«. 
# «Wh gL'rii.' is made up ol">'r HH< 
fnuncnJing fionc; 

»selcciiiin.npcriiior 
« tournament w ith .replacement    clocsn t work 
s Iciunianicnt withiMit.it'pkkTiiiL'nl cloesn t work 
ff Itiurnamcnl.lHilvtix'n formation« 

•■* piuhahiliiv of cro<<<!o\cr 
»«liip criteria 

# raniioni number (jcnciator «ecd 
#icpon. population 
# turned off 
#i«sppn bf^l liKfivuliiitl 
# im no J ofl 
JrKIlicmplalu t'iicnamo 
it ihi< fik- should contain a Mi mg tioniO   tiudinf.'. gcni» tor 
# .1 BH template.-   11 «houkl be in ihe canonical I'm in 
#*******************************************************^ 

buildiiij; block«. T.i 
1-24 CIIARMM. hVAL 10 il7 0 

i-cJinj: gciw«. 240 
non<:nding_gene$: 4560 

«.dt\"li»ii._npi:rrtIoi tuumiinunl hülwt,on_gt>m,r:iliuib 
wlootimi. rate 4 

Nlnp.ciiit'iia' sen • 5011*1 
seal 0 *72W35 
fcpon_pnpulntion off 
it:p<«n__be«.i..imii\idu;il'     otf 
Kliicinplalc_lili:naino.        best Ixt 

Figure 77: Sample LLGA Input File 

The LLGA implementations creates output files: timing.txt, charmm_molecules.txt, and 

output.txt. timing.txt contains the timing characteristics for each LLGA execution broken 
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down as the total program execution and the CHARMm energy model execution. 

charmm_molecules.txt contains every chromosome sent to the fitness function as well as 

the corresponding fitness values. Finally, output.txt contains population parameters for 

the complete LLGA execution. Be careful! This file grows rapidly. A typical 5,000 

generation run of the LLGA results in 100Mb of information stored in output.txt. In order 

to record these files, the charmm define in output.h needs to be specified and the source 

code recompiled for charmm_molecules.txt and the output define needs to be specified for 

output.h. 
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Appendix G: Flow Diagrams for AFIT's Implementation of the 
CHARMm Energy Model 

This appendix documents the structural design of the AFIT implemented 

CHARMm energy model. First a top-level structure chart is given followed by the top 

level CHARMm structure chart (func). Finally, the structure charts for the local 

minimization techniques are include. 

Text in blue represents global variables and text in red indicates dynamically 

passed function calls. These figures must be seen in color. 
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Figure 78: Top Level Structure Chart 
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Figure 79: CHARMm Top-level Data and Structure Diagram 
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Appendix H: Object Classes for the Redesigned LLGA 

The overall class decomposition for the redesigned LLGA is in Chapter 4 Figure 

27. This appendix lists the corresponding Rumbaugh diagrams for each object class. 

The text in red indicates parts of Harik's hierarchy that we changed. 

Hga 
{llga.hpp} 

Attribute 
n_BBs: static int; { number of building blocks and subfunctions} 
*subfunc: static Subfunc; {types of subfunction: data type 

defined here} 
*gene_Subfunc: static int; {data stucturethat given a gene finds the 

BB that the gene belongs to.} 
seed: static double; {seed for random number generator} 
coding_genes: static int; {problem length - equivalent to sGA 

chromosome length - exons) 
noncoding_genes: static int; {number of introns} 
total_genes: static int; {intron + exons) 
popsize: static int; {population size) 
pcross: static double; {probability of crossover) 
selection: static PSO; {selection method - data type defined here} 
s: static int; {selection rate - tournament size) 
stop_criteria: static PSC; {stop criteria - data type defined here} 
stop_criteria_arg: static int; {stop criteria argument (ex: maxgen)) 
gen: static int; {generation counter } 
lnitialization...Accornplished: static bool; {flag for charmm initialization ; 
num_.processors: static int; {number of processors used in parallel} 
myid: static int; {my processor identifcation } 
BBtemplate_filename[20]: static char; {filename of BB template file} 

Operation: 
{this is the main loop for the program} 

report 
{llga.hpp} 

Attribute 
population: static bool; {flag - on = report population / off = don't) 
bestjndividual: static bool {flag - on report best individual / off = don't) 

Operation: 
{this class is used as flags to tell what to report) 

timing 
{llga.hpp} 

Attribute 
llga_start_time: static double; {start time for complete run} 
llga„stop_time: static double; {stop time for complete run) 
charmm_start_time: static double; {start time for charmm evai) 
charmm_stop_time: static double; {stop time for charmm eval) 
charmm_ave_time: static double; {average time for charmm evals} 
times_charmm_called: static int; {number of time charmm called) 
timeF: static ofstream; {output filename} 

Operation: 
{this class is used as flags to tell what to report) 

llga_io 
{llgajo.hpp} 

Attribute: 

Operation: 
void read_parameters (ifstream &in ); 
void report (int gen, population *pop, ofstream SreportF, 

ofstream SconvergenceF, ofstream SmaxLinkageF, 
ofstream SavgLinkageF ); 

void print_header ( ofstream &out); 
void helpO; 

int findjestfunc ( char "key ); 
int find_selection_op ( char *key ); 
int find_sc ( char *key ); 

util 
{util.hpp} 

Attribute: 

Operation: 
void makeshuffle {int "shufflearray, int n ); 
void errorcheck ( char *str, bool condition   ); 

bool is_odd {int x ); 
bool is_even (int x ); 
int Min (int a, int b ); 
int Min3( int a, int b, int c ); 
double sqr ( double x ); 
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random.h 

Attribute: 

Operation: 
void randomize ( double seed ); 

int flip ( double probability ); 
int rnd (int low, int high ); 
double randomO! (); 

population 
{population.hpp} 

Attribute: 
•Chromosome: chromosome; {array of chromsomes} 
'MatingPool: int {mating pool} 

"BBtemplate: chromosome; {a chromsomes) 
'Worst: chromosome; {the worst chromsomes in the population] 

*BB: int; {number of building blocks across the pop} 
MaxFit: double; {max fitness} 
MinFit: double; {min fitness} 
AvgFit: double; {average fitness} 
MaxBBs: double;  {max # of BBsin a singel individual} 
AvgBBs: double; {avg # of BBs per individual} 
MaxChromLength: int; {max chromsome length} 
MinChromLength: int; {min chromosome length} 
AvgChromLength: double; {avg chromsome length} 
Best: int; {index of best individual} 

•MaxLinkage: double: {max linkage of BBs} 
'AvgLinkage: double: {avg linkage of BBs} 

Operation: 
double compute_maxobj(); 
int count_copies_of_BB(int BB_number); 
void initial_gen_random(); 
int tournament_winner(int "shuffle, int &pick, int s); 

population)); 
population(population &pop); 
-populationf); 

void initial_generation (fstream &bbF); 
population * selectionfiopulafion 'children); 
void recombinationfpopulation 'children); 

void statistics(); 
void save...worst(); 
void evaluate'); 

double maxChromLength(); 
double minChromLength(); 
double avgChromLengthf); 
double maxfitQ; 
double minfitQ; 
double avgfitf); 
double  maxBBsf); 
double avgBBsf); 
int bestf); 

int copies_of_BB(int i); 
chromosome & population[](int index); 
population & operator=(population & pop); 
ostream Soperator 
void printfostream &out); 

void prinLBB(ostream &out); 
void print....worst(ostream &out); 

friend void tselect_without_replacement(population &pop); 
friend void tselect_with_replacement(population &pop); 

friend void tselect_between_generations(population &pop, 
population &children) 

friend int sc_maxgen(const population &pop, int gen); 
friend int sc_all_or_none_BB(const population &pop, int dummy); 
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chromosome 
{chromosome.hpp) 

Attribute: 
Genes: geneArray; {array of introns and exons) 
Size: int; {size of chromosome) 
Fitness: double; {fitness value) 
Canonical: geneArray; {array of expressed introns) 

'Linkage: double; {max linkage of BB} 

Operation: 
chromosomeQ; 
chromosome{chromosome&pop); 
~chromosome(); 
chromosome & chromosome::operator = ( chromosome &c ); 

void random (); 
void insert( gene &g ); 
void computeJinkagesQ; 
void display( ostream &out); 
void asGeneArray( geneArray Stemp, int &tempsize ); 
void express(geneArray Stemp, int &tempsize ); 
void express)); 
void evaluate(); 
void inject)); 

void display_BB( ostream &out); 
void lniiialize_BB( ifstream SbbF ); 

bool hasBB(); 
int get_random 
int size(); 
double fitness)); 
int correctBBsQ; 

point(); 

geneArray 
geneArray.hpp 

Attribute: 
Size: int 
*Genes: gene 

Operation: 
geneArray( int size ); 
geneArrayf geneArray &v ] 
-geneArrayf); 
gene & opertor[]( int i); 
ostream Sopertor; 
int size(); 

gene 
{gene.hpp) 

Attribute: 
Locus: int 
Allele: char 

Operation: 
genefint p, char a); 
genefgene &g); 
~gene{); 

void set(int p, char a); 
void set_allele(char a); 
void set_allele(int a); 
void set_locus(int p); 
void randomQ; 
void flip(); 

char allelef); 
int locus(); 
bool is_intron(); 

gene &operator=(gene &g); 
ostream Soperator; 

objfunc 
{objfunc.hpp} 

Attribute: 

Operation: 
double objfunc (geneArray &v) 

double trap (int Ibits, double signal, int "locus, geneArray &x ) 
double tmmp (int Ibits, double signal, int *locus, geneArray &x ) 

double CHARMM_EVAL { int dummy!, double dummy2, int 
*dummy3, geneArray &x ) 
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Appendix I: Newman Projection for the Each Dihedral 

Constraint 

This appendix contains Newman Projections to aid the understanding of the 

constraints placed on each dihedral angle. View the center of the circle as the first atom 

in the atom pair. Then, the indicated regions depict the possible location of the 

corresponding next atom. 

Figure 86: Phi Constraints 

Figure 87: Gylcine Phi Constraints 

Figure 89: Omega Constraints 

Figure 90: Chi Constraints 

Figure 88: Psi Constraints 
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Appendix J: Statistics Explained 

No experiment is complete without a thorough and complete analysis of the 

collected data. This section covers the types of analysis that could be conducted for 

each set of experiments including analysis of variance and the Kruskal-Wallis H test. 

We shall use ANOVA F-test in conjunction with Kruskal-Wallis H Test to show that valid 

comparisons can be made between separate GA populations. 

J.1 Analysis of Variance Testing (ANOVA) 

"Essentially, this analysis determines whether the discrepancies between the 

treatment averages are greater than could be reasonably be expected from the variation 

that occurs within the treatment classification [76]." Historically, statistical publications 

use the term "treatments" to refer to different populations [74]. ANOVA can be used to 

compare a number of population means simultaneously. Thus, the need to make a 

large number of two-sample tests is avoided [74]. The assumption made about the 

distribution of the data becomes important when we want to use ANOVA to make 

decisions. For instance, when we assume the observations come from a normal 

distribution whose variance does not depend on treatment levels, then the summary 

statistics (MSE, MStreatment, F) have known distributions. It allows us to answer "if there is 

no treatment effect, is it likely we would see an F-statistic this large?" If the answer is 

"the probability is too small (i.e., a small p-value), then we conclude that there is a 

treatment effect." The central limit theorem provides the basis for the explanation of the 

observed fact that many random variables tend to be normally distributed. Referring to 

Table 19, the population for each experiment is only 50 members out of a search space 

of 2240 possibilities. Therefore, we cannot implicitly assume that our population is 

normally distributed and compare two individuals from separate population (i.e. 

comparison of two unique optimal solutions). Hence, the supporting Kruskal-Wallis H 

Test in these case. If both tests agree that the individuals can be compared, then valid 

conclusions can be made between separate test. 

On the other hand, we can use the F-test when we are comparing the average 

energy obtained by two unique algorithm executions because we are taking the average 

over the entire population (fifty members). The Central Limit Theorem indicates that if 

we take a large number of observations independently from the treatment groups and 

take twice their average, the average will behave as if it came from a normal distribution. 
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The upshort of this is that if you construct a ANOVA table and calculate the F-test, this 

will then have an approxiamte F distribution.. Furthermore, the population size inside 

the GA has little to do with the distribution of the output (i.e., the average energy). 

Table 46 is an example of a two-way ANOVA table for the test identified in Section 5.3. 

Selection Scheme 
Random Number        Experiment 1                                  Experiment 1 

(LLGA)                                              (pLLGA) 
0.014150 Execution 1 Execution 1 

"0928304 

lliBMllllillB||llllWi!illllMlll^ii^MlllllMlll|l^plls|Si(llllll^llli|| 

Execution 7 Execution 7 

Table 46: Example ANOVA Table 

For hypothesis testing, the model errors are assumed to be independent 

normally distributed random variables with mean of zero and variance of a2. The basic 

two-way ANOVA test follows the mathematical model [76]: 

/ = 1,2. 

where, u.y.., the overall mean effect, z- is the effect of the ith level of the first factor A, 

ß/i- is the effect of the jth level of the second factor B. 

(r ß\, is the interaction between r, and ß-, and 

Ef jjk is the random error component. 

Equation 44: Two-Way ANOVA Design 

Usually, ANOVA analysis is presented in a table similar to Table 47, which 

shows the general decomposition of a two-way ANOVA analysis. 

Source(s) of    Sum of Squares    Degrees of Freedom     Mean Square 
(SS) (DoF) (MS) 

ISSA a-1 SS/DoF MSA / MSP 

SS, b-1 SS/DoF MSB / MSc 
SSAB (a-1)(b-D SS/DoF MSAB / MS? 
SSE ab(n-1) SS/DoF 

[SST abn -1 

Table 47: Two-Way ANOVA Decomposition Table 

The terms of the table are computed in the following manner [77]: 
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J.2 Kruskal-Wallis H Test 
The Kruskal-Wallis test is used in place of the ANOVA test when the treatments 

cannot be assumed normally distributed. This is the case when a GA uses a small 

treatment populations, and therefore, the central limit theorem does not apply. This test 

is used to validate ANOVA results because of the small treatment populations. 

The Kruskal-Wallis test uses a ranking method [74]. Let ni be the number of 

observations in the ith sample, k samples are grouped together and ranked from 

smallest to largest, substituting the appropriate rank for 1 to n-, observations. 

(Observations with the same values are given the average of their ranks.) The sum of 

the ranks for each sample is then computed: 

where. R is the sum of" the ranks from the i'jl sample 

Equation 45: Kruskal-Wallis H Test 
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If each sample consists of at least five (5) observations, then H can be 

approximated by a chi-square distribution with k -1 degrees of freedom [74]. If five 

observations can not be made, then the exact distribution of H can be found and critical 

values derived. If H < %2, then we can accept the null hypothesis. On the other hand, 

when H > %2we reject the null hypothesis. 

J.3 The Central Limit Theorem 

The underlying principle which allows the application of ANOVA testing is the 

Central Limit Theorem [Theorem 1]. We can apply this theorem when enough samples 

are drawn from the populations. As a rule of thumb, the Central Limit Theorem can be 

applied to an experiment where at least 30 samples are used. The central limit theorem 

provides the basis for the explanation of the observed phenomenon that many random 

variables tend to be normally distributed. 

Central Limit Theorem: Let X1, X2,... be independent, identically distributed random variables, 

each having mean and standard deviation   > 0. Let Sn - X1 +... + Xn. then for each x < y, 

n/i 

Where <I> is standard normal distribution function. 

lim  P 
n->°° 

x^-0—=-£' O(y)-  4>(x), 

Theorem 1: Central Limit Theorem 
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Appendix K. Material for Test Platforms 

K.1 AFIT Network Of Workstations (NOW) 

The AFIT NOW consists of six (6) Sun workstations connected via a high-speed 

Myrinet switch78 and a 10 Mbit ethernet hub [82]. The AFIT NOW has been in existence 

in its current configuration since October 1996. 

The workstations comprising the NOW are Sun Ultra Sparc Models 170 and 200. 

The heart of the Ultra is a 170 or 200 MHz, four-way superscalar Sparc version 9 

processor. There are two integer arithmetic logic units (ALUs) and 2 floating point (FP) 

ALUs. The FP ALUs are pipelined with an FP add or multiply taking only 3 cycles. 

There is a 32 Kilobyte (KB), on-die, Level 1 cache comprised of a 16 KB direct- 

mapped data cache and a 16 KB 2-way set associative instruction cache. Off-die there 

is a 512 KB Level 2 cache. Each Ulta has 128 MB of RAM and two 1 GB local hard 

drives. The I/O bus operates at 25 MHz and has a 64 Bit wide data path. 

K.2 IBMSP2 

The IBM SP2 is an MPP with a multistage Omega network. Each group of eight 

(8) nodes are connected via a switch board, called a frame, that is comprised of four 4x4 

omega switches. Multiple frames are interconnected to scale the network with 

intermediate switching hardware. 

The IBM SP2, located at the Aeronautical System Center's (ASC) Major Share 

Resource Center (MSRC) at Wright-Patterson AFB, has 25679 nodes [83]. Each node is 

a 135 MHz RS/6000 Power2 SC (P2SC) processor with 1 GB of RAM. The P2SC is a 

four-issue superscalar processor that can perform two simultaneous integer and FP 

instructions. 

Each processor has a 128 KB 4-way set associative data cache and a 32 KB 

instruction cache. The network interface card (NIC) on each node has a Power PC 601 

processor and performs DMA only to and from the host processor. The DMA 

performance varies with a maximum transfer rate of 160 MB/sec on the 64 bit 20 MHz 

micro-channel bus. The network has a peak theoretical bandwidth of 300 MB/sec in full- 

duplex mode. 

78 The Myrinet is capable of either 1.28 Gbit or 2.56 Gbit full-duplex communications. 
79 Only 233 nodes are available for processing. 
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K.3 AFIT Heterogeneous Beowulf 

The AFIT ABC Beowulf consists of one DELL 450 MHz Pentimum80 II processor, 

six DELL 400 MHz Pentimum II processors, and four Gateway 333 MHz Pentimum II 

processors connected via a 100 Mb/sec full duplex switched Fast Ethernet. Each 

processor can be booted with either Windows NT 4.0 or Linux 2.0.33. The two 

operating systems mounted on separate hard drives. Parallel communication is handled 

through MPI/PRO 1.2.3 or Patent MPI 4.0 for Windows NT and MPICH version 1.1 for 

Linux applications. 

Three of the four Gateways have 128 Mb 15 nsec SDRAM, and each of the 

DELL processors has 128 MB of 10 nsec81 SDRAM. The fourth Gateway has 256 Mb 

15 nsec SDRAM. The Pentimum II processor Level 1 cache consists of a 4-way set 

associative 16 KB instruction cache and 16 KB nonlocking 2-way set associative dual 

ported data cache. The Level 2 cache is 512 KB nonblocking, squashing, unified 4-way 

set associative physically addressed L2 cache capable of handling four outstanding 

misses and has a twelve entry load queue. The L2 cache is clocked at half the speed of 

the processor. 

Under the NT configuration, each Gateway processor has one 8 GB EIDE hard 

drive at its disposal; the DELL computers each have one 8.4 GB SCSI hard drive. 

When the system is Linux, each processor (Gateway or DELL) has one 5.6 GB EIDE 

hard drive available, except one that has an 540 MB EIDE hard drive. 

Finally, the I/O bus on the Gateways operates at 66 MHz whereas the DELL's 

I/O bus is clocked at 100 MHz. 

80 Pentimum II is a registered trademark of the Intel Corporation. 
81 nsec = nanoseconds or 10"9 seconds 
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8.0 Vita 

Captain Karl R. Deerman enlisted in the Untied States Air Force in June 1989. 

He attended the USAF Preparatory School. Upon graduation, he attended the USAF 

Academy where he earned his bachelor's degree in computer science and received his 

commission in June 1994. He was assign the Air Force Operational Test and 

Evaluation Center (AFOTEC), New Mexico, where he was responsible for the test and 

evaluation of the software for the B-2, the Unmanned Aerial Vehicle (UAV), the Joint 

Computer-based Acquisitions and Logistic System. Captain Deerman left the AFOTEC 

in 1998 to attend AFIT. He was subsequently assigned to Air Force Research 

Laboratory where he will apply hie education to similar research projects. 
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